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ABSTRACT

In this thesis a form of the Minimal Controller Synthesis (MCS) algorithm named
as the reduced order MCS control is presented. The MCS control is a form of Model
Reference Adaptive Control (MRAC). The thesis concentrates on the use of the reduced
order MCS instead of the standard MCS control. The reduced order MCS control as well
as the standard MCS control continuously adapts itself to changes in the plant parameters
and the system working conditions unlike linear control strategies. The dynamics of the
hydraulic systems are nonlinear and the parameters of the plant vary with time and working
conditions therefore using the reduced order MCS control brings many advantages. A lot
of work has been done in the application of adaptive control in hydraulic field. Adaptive
control and its applications in hydraulic field will be studied in Chapter 1.

The simulation of hydraulic systems can be very helpful when choosing suitable
controller gains satisfying the desired closed-loop. The importance of simulation and
modelling will be emphasised in Chapter 2. In this chapter, the electrohydraulic actuator
plant will be modelled and simulated in Simulink.

Model reduction is widely used in practical applications due to the fact that the
full model of the plant may not be available in many cases, even if it is available the
computation of the plant model and the implementation of the controller are time
consuming. Ten linear model reduction methods will be presented in Chapter 3.

The stability of the reduced order MCS control will be analytically investigated in
Chapter 4. The analysis will be carried out for both SISO and MIMO. system. The reduced
order MCS control will be assumed as the standard MCS control in which the controlled
plant contains some unmodelled dynamics. This unmodelled term will be included in the
disturbance term. The nature of the disturbance term is crucial, if the disturbance term is
slowly varying then Popov’s method will be used to guarantee the stability of the system.
In the case of rapidly varying disturbance term the Lyapunov method will be used. Using
the reduced order MCS control instead of the standard MCS control has many advantages:
firstly the structure of the controller is simple, secondly in many cases it makes the systems
more effective and efficient due to the fact that it avoids over parameterisation of the plant.

In Chapter 5, the MCS control and a Proportional Plus Derivative Feedback
(P+DFB) control will be implemented on the electrohydraulic actuator plant. The
performances of the reduced second order MCS control will be compared with the
conventional control in the face of changes in the working condition.

The reduced order MCS control of electrohydraulic servomechanisms will be
used for closed loop control of stroke and load in Chapter 6. The MCS control and a
Proportional Plus Integral (P+I) Control will be implemented on the ESH material testing
machine in Chapter 6. The plant has a nominal second order transfer function and the MCS
control will be implemented in a reduced first order form. The performances of the MCS
will be compared with the equivalent P+1 under load control.

In Chapter 7, the robustness of the reduced first order MCS control in the case of
the ESH material testing machine will be investigated by comparative tests. The results will
‘be very crucial to show the robustness of the reduced order MCS in practice.

In Chapter 8, conclusions to this thesis will be presented. Finally, possible future
improvements and developments will be discussed.
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is the (nxn) nominal plant parameter matrix.

is the (ixh) reduced order plant parameter matrix.

(hxh) reference model matrix.

are the effective area of the first and second chambers of the actuator
respectively.

is the average effective area of the actuator 4, = (A4 2).

is the (nixni) i" subsystem A matrix (MIMO systems).

s the & element of the last row of the matrix Aui.

is the k™ element of the last row of the matrix Ay

s the & element of the last row of the matrix Am; -

are the unknown parameters of the plant.

is the (nxn) matrix that contains the rapidly varying elements of 4.

denotes the i element of the n" (h* row of the reduced order plant matrix 4,.).
row of the plant A matrix (SISO Systems).
denotes the i element of the h® row of the re
Systems).

is the last element of &4, .

is the (#x1) vector related to r and d(x,, 1) (SISO T educed order plant).

is the (nx1) nominal plant matrix.
is the (hx1) reduced order plant matrix.
is the (ix1) reference model input matrix.

is the only non-zero element ofthe B (B, 1
is the output error matrix.

ference model A, matrix (SISO

1 the case of the reduced order plant).

is the disturbance term due to the unmodelled dynamics, plant parameters

variations and nonlinearities in the plant.
is the diameter of the specimen.

s the 4" element of the vector d(x., ) (SISO reduced order systems).
is the modulus of the elasticity.

is the coefficient of viscous friction.

is the first time derivative of a function f£).
:s the force due to the pressure differences.
is the nominal plant transfer function.

is the reduced order plant transfer function.
is the reduced order plant state dimension.
is the input current.

is the (Aixh) identity matrix.

is the moment of inertia.

is the second order MCS position gain.

s the second order MCS velocity gain.

is the second order MCS adaptive gain.

is the derivative gain.

is the proportional gain.

is the integral gain.

is the (kxr) MCS state feedback gain, (typically K(0)=0, MIMO systems).
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is the (kxk) MCS forward loop gain; (typically K,{0)=0, MIMO systems).
is the volumetric coefficient.

is the mass.

is the nominal plant state dimension.

is the bulk modulus of the oil.

are flows into the actuator chambers C,, C, respectively.

is the hydraulic volume flow (O;= 0, = ()).

is an (mxn) symmetric positive definite matrix associated with the Lyapunov
equation.

is the supply pressure.

is the pressure drop.

is an (xn) symmetric positive definite matrix solution of Lyapunov function
equation.

are pressures in the first and second chambers of the actuator.

is the pressure difference of the first and second chambers of the actuator
(AP=F - F)).

denotes the reference signal.

is the restoring stiffness.

denotes the set of real numbers.

denotes the set of positive real numbers.

denotes the set of real matrices of dimension (/nc/).

denotes the set of real matrices of dimension (#x1).

is Laplace vanable. -

denotes the state error vector.

is the (nx1) plant state vector. _

is the (Ax1) reduced order plant state vecter.

is the (nix1) the state vector of the /™ subsystem (MIMO systems).
denotes the reference model state vector. ‘
is the (nix1) i* subsystem reference model state vector (MIMO systems).

is the settling time.

denotes the time.

is the control signal.

is a Lyapunov function

denotes first derivative of a Lyapunov function.
is the total half volume.

is the effective half volume.
. . T
is the signal vector defined as, @ = [xT, rT] .

is the natural frequency of the servovalve (rad/sec).

is the plant output vector.

is the nominal plant output vector.

is the reduced order plant output vector.
1s the output error vector.

denotes the A" element of the vector y, (SISO reduced order plant).
is the (kxk) matrix that contains the terms a .




A,
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is the (kxk) matrix that contains the terms /3.
is the angle of rotation.

is the density of the fluid.

is the longitudinal stress.

is the yielding stress.

Qv

=

is the time constant.

is the damping coefficient of the servovalve.

is the (#x1)vector (SISO reduced order systems) or the (kxht+k) matrix (MIMO
reduced order systems) that contains the integral gains and the plant parameters.
is the (Ax1) vector (SISO reduced order systems) or the (kxnt+k) matrix (MIMO
reduced order systems) that contains the proportional gains and the elements of
the plant B matrix.

is the strain.

is the elongation of the bar in tension.

is the MCS integral adaption gain (scalar), a)0.

is the MCS proportional adaption gain (scalar), 52 0.

is the sampling interval.
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CHAPTER 1

REVIEW OF MODEL REFERENCE ADAPTIVE
CONTROL TOGETHER WITH ITS REDUCED
ORDER FORM AND ITS APPLICATIONS IN THE
HYDRAULIC FIELD

1.1 - INTRODUCTION

In real life the unmodelled dynamics and nonlinearities always exists in the plant
due to the fact that may be the dynamics of the plant is too complex or not completely
understood. Additionally, parameters of the plant changes depending op the working
condition and the input signal. For that reason, the effects of the unmodelled dynamics
should considered for linear controlleré implementation therefore, the accuracy of the
system responses. If the system is containing larger unmodelled dynamics, it seems
desirable to use model reference adaptive control which requires less knowledge about the
plant dynamic parameters.

Reduced order adaptive control can be described as the standard adaptive
controller together with some unmodelled dynamics. In this type of adaptive control the
plant is represented by an approximate lower order model. Subsequently some parts of the
plant are ignored and the unmodelled dynamics are included into the disturbances term.
The reduced order adaptive control is capable of controlling the system in a stable manner,

provided that some limitation on the reference model and input signal are considered.
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Cook and Chen [1] were used such an approach and they showed that the controller is
stable provided that the input signal is persistently exciting.

Hydraulic systems are inherently nonlinear and parameters of systems change
during its operation depending on various reasons. In comparison with linear controller
strategies using Model reference adaptive controller in hydral:llic systems control brings
many advantages, such as adaptivity to the changes in plant parameters and the working
conditions and nonlinearities in systems. Using adaptive controller in this field increase the
efficiency and accuracy of systems.

The adaptive system is exponentially stable when the input is persistently exciting
then, it has a sufficiently large amplitude. Under this condition the system will remain
robust when it is subject to bounded external disturbances. The adaptive system can be
made robust in the presence of a class of unmodelled dynamics of the plant by suitably
modifying the adaptive law.

Adaptive control has connections with other theories. First, there is a very strong
connection with nonlinear system theory because adaptive systems are inherently
nonlinear. Secondly, adaptive control also has links with singular perturbations and
averaging theory because of the separation of the time scales in some adaptive systems.
Thirdly, adaptive control has connections with stochastic control and parameter
estimation. This is due to importance of parameter estimation and converge of the
controller in adaptive systems. Adaptive controller can also be used in the case of system
identification tests to obtain the nominal transfer function of the system. Later this model

can be used to design fixed gain controller.

1.2 - ADAPTIVE CONTROL

Adaptive controflers have been used for controlling variety of systems since 1950.
Many research have been done to fully understand and improve adaptive controlier theory
over the years [2] and [3]). Over the years it has been experienced that using adaptive
controller in systems which are subject sudden changes have many advantages over linear

controller. Conventional controller can produce good responses provided that the working



condition and parameters of the system are not changing much but they may not be
accurate when the plant subjects to large parameter variations.

~ Adaptive control is not constant feedback control. In the work of Astrom [4],
adaptive control was simply described as a special type of nonlinear feedback control and
the states of the process were separated into two categories, which change at different

rates. The states, which were varying slowly observed as parameters.

1.2.1 - State-Space Stability Proof of Adaptive Systems

In the 1960s, there were important development in the adaptive control theory.
The state-space theory was introduced to describe plants by linear transfer function and
Lyapunov’s stability theory was also introduced to prove the convergence and stability of
adaptive sjzstems. There were also important developments and improvement in stochastic
control theory [5}. The converge of model reference adaptive control was proven in [6] by
using the update law, which was proposed in the 1950s.

During 1970s, adaptive regulators were implemented simply due to new .
developments in microelectronics. Popov’s hyperstability based mput-output proofs from
the late 1970s appear in [7] and in the work of Landau [8]. Stability proofs in the discrete
fime deterministic and stochastic cases also studied at this time from Goodwin and Sin [9].

Lyapunov based state-space stability proofs for adaptive systems were showed by
Narendra, Lin & Valavani in [10]. In this method, an additional feedback term was used to
ensure that the fist order time derivative of the parameter error vector belongs to the
stability region. It was shown that systems with relative degree greater than 2 together
with high frequency unmodelled dynamics to be never exponentially stable. The paper
presented a complete proof of stability in the case of multivariable continuous adaptive
control systems. In [11], the stability problem was clearly defined and it was suggested that
the controller could be stable provided that the output error is bounded.

Several methodé have app_eared in the literature discussing specific methods of
adjusting parameters in tile adaptive systems using Lyapunov’s direct method, which use a
model as a reference. In all methods, it has been suggested that the crucial point was the

determination of conditions under which the entire system is asymptotically stable.
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Narendra and Tripathi used Lyapunov’s direct method to determine the structure
of stable adaptive systems [12] in 1971. In this work, systems were described by first order
differential equations. The adjustment of the gain and the time constant was considered. It
was suggested that output noise and parameter variations in the plant can be compensated
by introducing new adaptive parameters. The effect of measurement noise in the case of
higher order system was also considered. The Lyapunov approach has been widely used in
order to measure the stability of adaptive systems which are subject to bounded (unknown)
time varying parameter variations.

By the beginning of 1980°s several basic problems had been resolved such as
identification of the adaptive controller in the case of linear time invariant plants together
with some additional restrictions on inputs and disturbances {13] and [14]. It was first
studied by Rohrs and co-workers that the stability of adaptive control were very sensitive
in the presence of unmodelled dynamics and it has to be handled very carefully. The

controller structure was simpliﬁed by neglecting the high frequency modes of the system in

[15].

4.2.2 - Effects of Unmodelled Dynamics & Disturbances

In the work of LindorfF [16] the effects of disturbance and incomplete parameter
adaptation on the performance of adaptive control were considered. The Lyapunov theory
was used to prove the stability of the system. Tt was shown that parameters in the adaptive
controller may not converge in the presence of disturbances and high frequency
unmodelled dynamics unless the input signal is sufficient enough in mid frequency range.

In the work of Ioannau and Kokotovic [17], the original plant model-reduced
order model mismatch was characterised by a scalar parameter 1, which was defined as
the ratio of the modelled (dominant) and unmodelled dynamics of the plant. It was
assumed that the dominant part of the plant is slow which can be matched by the reduced
order model. The unmodelled dynamics are fast and they are in the high frequency range.
In this adaptive law the output error played 2 dual role in the adjustment of the control

parameter vector. The scalar constant ¢z appeared as a singular perturbation parameter in

two-time scale representations of the plant.
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The development of tools for analysis of transient behaviour of the adaptive
system enabled this control strategy to be implemented on practical systems, such as
reactors, robot manipulators, ship steering systems, advanced flight control systems for
aircraft and spacecraft and process control. New developments in microelectronics made
possible to implement the nonlinear laws to existing adaptive c;ontrol. The research re-
examines the robustness properties of adaptive control and whether or not adaptive

controllers were at least as good as fixed gain controllers.

1.3 - ELECTROHYDRAULIC SYSTEMS

Electrohydraulic servo systems can be described as the combination of the high
power of hydraulic actuation and electronic control. Electrohydraulic systems can provide
very large torques together with fast dynamics, therefore, they have been used in many
industrial applications, such as: heavy duty robots, materials forming machine and
materials testing machine. It is difficult to obtain satisfactory results under linear controller,
due to fact that the dynamic equations of systems are nonlinear and plant parameters vary
greatly depending on the set point for various reasons, e.g. the nonlinear relation between
the flow velocity and the pressure, the hydraulic resistance of flow through the channels,
Reynolds number, the type of flows, channel geometry and friction factors. ‘

Standard analogue control strategies are not capable of bringing out the full
potential of the electrohydraulic servo systems due to nonlinear characteristics of such
systems. A linear controller can only be implemented for only one operating condition.
However, even at one operating point the plant characteristics will often vary during
operations. For that reason, digital controllers have been applied to electrohydraulic servo
systems, in particular position control systems. In this techniques, usually linearised model
of the controlled plant has been used for the implementation and the controller parameters
are changed easily according to variations in systems characteristics and nonlinearities
Digital controllers have been using in electrohydraulic positioning systems control since
1970 [18]. Recently, adapt;ive controllers have been applied to powerful electrohydraulic

systems easily and cheaply due to use of fast microcomputers.
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The relationship between the flow and pressure is nonlinear in the servovalve and
at the range of low tests frequencies its dynamics is negligible. During stress and strain
tests the servovalve operates very close to its null position. In addition is such tests, supply
pressure to the servovalve can assume to be constant since the flow rate variations are
negligible. The unwanted feature of this type of application is the internal and external
leakage of the actuator. The servovalve operation near its null position has important
implications for on-line identification and controller adaptation,

In a hydraulic system the speed of the hydraulic motor can be controlled by
varying either the pump displacement or the pump speed. The inverter controlled hydraulic
motor system under a Self-tuning control was studied in [19]. The pump speed changed by
using an inverter which adjusts the speed of an induction motor. The pump controlled
system showed faster response with higher accuracy but its efficiency was lower. On the
other hand the inverter controlled hydraulic systems showed higher accuracy but their
response was slower and the direction of the hydraulic motor unchangeable. Nevertheless,
the inverter controlled hydraufic systems have simpler structure and they cost
comparatively less price.

The electrohydraulic positioning servo system shows nonlinear behaviour due to
following reasons: a directional nonlinearity due to use of asymmetric actuator, the
nonlinear relationship between pressure and flow in the servovalve the square root of the
pressure drop across the orifice, the characteristics of the system changes during the stroke
due to the volume changes and saturation of the servovalve and backlash in the actuator.
The directional nonlinearity does have a significant effect on the system performances
especially when the load is driven in the extend direction. This nonlinearity can be
compensated for in software by scaling the valve control signal differently according to its
sign, Similarly, nonfinearities due to the servovalve saturation can be avoided by limiting
the control signal in software to be just within the level which saturates the valve. This will

not allow to saturate the servovalve.

J T MU LRI N
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1.4 - APPLICATIONS OF ADAPTIVE CONTROL IN THE CASE OF
ELECTROHYDRAULIC SYSTEMS

In general, Proportional or Proportional pius Derivative Feedback (P+DFB)
control are used in position control of hydraulic systems. The reason of that is hydraulic
positioning systems show integral action due to the nonlinear relationship between the flow
from the servovalve and the position of the actuator piston. The flow is proportional to the
velocity of the actuator, therefore these control strategies may produce large steady-state
error in position control. Similarly, using Proportional plus Integral Control (P+I) or PID

controller in order to get an zero steady-state error, will result in undesired overshoot or

even oscillating transient behaviour due to the existence of a natural integrator in the plant.

In general this makes, conventional controller unsuitable for the position control of
hydraulic systems. Adaptive controllers are good option in this area, specially if the
hydraulic actuator has single rod cylinder [20].

Direct and indirect adaptive control have been used for the practical application of
adaptive control to electrohydraulic positioning systems. Mode! reference (direct) adaptive
control coefficients are required to obtain a prescribed model following performances
which are estimated from input-output data therefore, parameters not calculated from a
plant model. |

Self-tuning (indirect) adaptive control is based on on-line estimated modell of the
original system. The controller continuously adapt itself to the new estimated modei; In the
work of Finney, Self-tuning control was only used for the initial tuning of controller
parameters [21]. For a full adaptive version the estimator should be modified to forget old
data, for example byl the inclusion of a fixed forgetting factor as used by Vaughan and
Whiting [22]. Daley implemented a similar method to a rotary hydraulic system in 1987,
which was studied in [23]. In this work, the Self-tuning control algorithm was applied to a
rotary electrohydraulic test rig. It was shown that the Self-tuning control algorithm was
preserved the system stability in the presence of large and sudden changes in the system
characteristics. When the system controlled under 2 fixed gain PID controller subjected to
similar changes, the controller broke down. Both controllers were shown to perform well
in nominal condition despite the presence of nonlinearities, measurement noise and load

disturbances. It was suggested that for a satisfactory application of indirect adaptive
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controller an accurate parameter estimator together with signal filtering are necessary [24].

In this work an indirect adaptive controller was implemented to an electrohydraulic servo

- gctuator system. Additionally, an method which was not allowing the plant parameters

increase beyond the certain points used to preserve the system stabi]ity.

An implicit Se!f-tuning regulator (STR) control was impleﬁlented on an single rod
actuator servo system in {25]. The difference between the implicit and explicit STR is there
is no need to solve the Diophantine equation in the case implicit STR. In [26], another
Self-tuning adaptive controller was applied to a single rod actuator positioning system
based on a pole placement control. In this work the recursive least squares estimator
approach and a data filter were used together with the pole placement adaptive control.
This algorithm gave good responses despite the nonlinearities, unmodelled dynamics and
changes in the system, even when the changes were significant and sudden. In same
condition an equivalent linear controller did not produced satisfactory responses. The
steady-state error was occurred partly non-symmetric characteristic of the single rod
actuator electrohydraulic position system.

The performances of the implicit and standard STR were compared in [27]. It was
shown that the implicit STR structure is simpler since the algorithm itself directly
estimating the controller parameters. Additionally, it was demonstrated that the implicit
STR vyield better control performance in comparison with explicit STR, even under
variations in operating conditions.

Nonlinear aspects of the material testing applications makes such applications
good candidates for adaptive control. Using an adaptive controller in the material testing
area has many advantages due to the fact that the controller can adapt itself to nonlinear
changes in the system and specimen unlike linear controller strategies. Therefore, adaptive
control can be use very effectively in tests involving higher test frequencies and tests
involving nonlinear specimen deformation such as low cycle fatigue tests. In all closed-
loop electrohydraulic strain and load control tests, the non-ideal nature of servovalve are
significant and can be handled effectively by adaptive controller. In [28], a Self-tuning
control was implemented on a electrohydraulic material testing machine and it was used in
stroke, load and strain cdntroi. A pole-placement controiler approach was used for
controller adaptation. The self-tuning control scheme was shown to be effective in both

simulation and real life operation.
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A number of applications of model reference adaptive control to electrohydraulic

position control systems exist (Edge and Figueredo [29] and [30]). In [31] an adaptive

controller was designed and implemented on a microcomputer and successfully applied to

a electrohydraulic positioning system. In this work, the model reference adaptive control

 was implemented based on Lyapunov’s stability method and thé stability of the position

control system was examined in the presence of changes in load forces.

A model reference adaptive controller was implemented to a servohydraulic
piston motor in which the Bessel prototype transfer function was chosen as the reference
model in [32]. The adaptive controller was performed better than the PID and model
following optimal controller when the plant subjected to changes in pressure, loads and
input signal. This was due to the fact that the adaptive controller adapted itself changes in
the dynamic parameters of the system.

Both the direct (Model Reference Adaptive Controller) and indirect (Self-tuning
controller) have been used in the case of electrohydraulic system control. In many cases
the adaptive control methods were applied to the systems in a reduced order form and
satisfactory results were obtained. However, the Self-tuning controller requires on-line
plant parameter identification. Therefore, the implementation of the Self-tuning controllers
are time consuming. The structure of the direct adaptive controller, (e.g. the MCS control)

is simple, therefore easy to implement.

1.5 - ADAPTIVE CONTROL WITH UNMODELLED DYNAMICS

In the presence of unmodelied dynamics adaptive controller preserve the system
stability provided that the input signal is Persistently Exciting (PE). In general, the effects
of unmodeiled dynamics (reduced order adaptive controlier) are assumed acting as
disturbances therefore, it is included into the disturbances term in state-space
representation of the plant. Under this condition the controller possess convergence
properties which allow certain amount of disturbances can be tolerated [1]. The converge
between the nominal and the reduced order plant is not global and depends on many

variables.
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The concept of stability of adaptive control is that it should be preserved in the
presence of actual disturbances present in the system. The main difference between
adaptive control and linear control system is that stability does not depend only on the
plant and control system but also on the reference input in the case of adaptive control.
The reference input should be persistently exciting in the case of the nominal adaptive
system “(suppose there is no disturbances and unmodelled dynamics) to preserve the
stability.

Exponentially stable adaptive system are stable in the presence of disturbances
due to the unmodelled dynamics, plant parameters variations and nonlinearities in the
plant. Exponential stability condition will bring a stability margin which will preserve the
stability of the adaptive system in the presence of disturbances provided that the input
signal is persistently exciting [33]. In the case of uniformly asymptotically stable system the
stability margin will be an equilibrium surface instead of a single equilibrium point and if

the system becomes unstable then, the equilibrium surface became a locally unstable point

[10].

X,
Reference "

Model +
d(x,f) X
ARG Plant + r D
Unmodelled
[Dynamics

Xe

Adaptive
Controller

Fig. 1.1: Adaptive controller with disturbances due to unmodelled dynamics and plant
parameter variations.

In Fig. 1.1, x,, is the reference model output, x, is the reduced order plant output, r 1§ the
reference signal, u is the inpflt signal to the plant, d(x.,t) is the disturbance term due to the
unmodelied dynamics, parameter variations and nonlinearities in the plant and x. is the

output error signal.
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Ideally, if the system is disturbances free then, the steady-state error goes to zero
when time goes to infinity. The stability of adaptive systems can be preserved in the

* presence of internal (unmodelled dynamics) and external disturbances provided that

. maximum magnitude of the disturbance is known [34].

Two essential instability mechanisms occur due to :unmodelled dynamics in
adaptive control. The first one is when the adaptive controller gains are very big. This will
lead to very fast adaptation and finally the instability will take place due to excitation in the
high frequency range of the plant. The second instability take place when the input signal is
exciting the high order unmodelled parts of the systems [35]. This kind of instability

happens rather slowly even for the suitable set small values of the adaptive gains.

1.6 - REDUCED ORDER MODEL REFERENCE ADAPTIVE CONTROL

The standard adaptive controller may not be give satisfactory responses in the
presence of unmodelled dynamics due to ignorance of the high order states of the plant.
The stability can be preserved under this condition provided that some limitations are set
on the input and reference signal. Some new adaptive laws were proposed to cope with
this problem. General characteristics of this methods are that they required very little
information about the plant parameters therefore, they can easily preserve the system
stability in the presence of unmodelled dynamics. Park used similar method in [6]. He set a
suitable set adaptive loop gain to converge the nominal and reduced order system. The
adaptive system with this new adaptive law shown in Fig. 1.2. Consider a time-invariant

plant in state-space form
x(f) = Ax(r) + Bu(t) (1.1)
where 4 € R™ and B € R™ and x:[x1 . X, , xn]T x € R™  The

variables x(7) and u(f) denote the plant state vector and the control input respectively. The

stable reference model is given by
%,(t) = 4,x,{(1)+B,r(?) (1.2)
where x={x,}, x, ={x,} are n-dimensional state vectors of the reduced order plant

and reference model respectively, r() is the m-dimensional reference signal and u(f) is the

11
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plant input signal of m-dimensional. 4, B contain unknown coefficients of the plant. The
output error is written as

X, =X, —X

X, =A%)+ f (1.3)
where f = (4, — A)x(¢)+ B,r(t) - Bu(t), then the control objective is to manipulate f in

some way so that limx, (t) = 0. Therefore, Lyapunov’s theorem is introduced to (1.3):

(=m0

szZPxe+h(¢>+‘P) (1.4)
where ®,¥ are matrices of parameter vectors ® (i=1,...,n), Y. (=1..,m) to be
defined. Then, equation (1.4) becomes:

V=—xT0x, +2xTPf +h (1.5)
where

~Q=A P+ PA, (1.6)

By Lyapunov’s theorem, with any O > 0, it follows that P > 0 is a unique solution to
Equation (1.6), 4, is a stable matrix, as assumed.

Derivatives of model-plant error are sometimes required e.g., M.LT. rule {36], but
may be avoided in gain adjustment schemes if the system transfer function is ‘positive real’
by using Kalman’s lemma. Parks’s use of Kalman’s lemma (1963), subsequently extended
by Monopoli and co-workers in [37]. It was shown that the adaptive law K, =l/1"xer , will
preserve stability provided that the closed-loop transfer function ts strictly poéitive real. If

the plant transfer function is positive real then, the set V =0 must be examined to ensure
asymptotic stability of x.. In feedback schemes plant parameters are adjusted continuously,

so that in the simplified case treated here, x, — 0. Equation (1.4) can be written as

V=x!Px,+ icbfcb,. + i‘Pf‘P,. (1.7)

i=1 i=l

where ®,, ¥, are parameter vectors to be defined in terms of the elements of the
matrices A, - A and B, —B which express the parameter error between the model and

the plant.

12
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Fig. 1.2: Reduction of order configuration with adaptive gain (Taken from [6])

In this diagram K, is the adaptive loop gain which adjusts K., K, to mach the model gain K.
Hence, the steady-state error will ideally will become zero when times goes to infinity.

Following Equation (1.5) becomes
V =—xIQx, +2(xjpf+2cb?q>,. +Z‘I’,.T‘P,.] (1.8)
i=1 =1

let E define the whole state-space with & eE whered s defined by
£ = [x:,fbf,...,@i,‘{’lr,.._,‘l’:]. Let E, — E, where E, is the n-dimensional subspace
with x. € E,. In Equation (1.7) ¥ is positive definite in £. The basic idea in feedback

synthesis is to specify (<i>i ,‘I{) in (1.8) so that
TP +Y D, + 3 ¥ =0 (1.9)
i=1 i=1

and consequently

V= —xTQx, | (1.10)
Since ¥ is only negative semidefinite in E, but negative definite in E,, it may be concluded
according to the Lyapunov’s theorem, that the equilibrium at x. = 0 is asymptotically
stable and equilibrium at & =0 is stable. It follows that x, —> 0 and the parameter error
vectors are bounded. It w111 be shown in certain cases that £ — 0 if the frequency content

of the input signal is persistently exciting.

An extended criteria which made non-positive real transfer functions to positive

real by multiplying by a polynomial in s with roots of negative real parts was used in [36].

13



. 'ﬁy doing so, the resulting adaptive law required n-m-2 derivatives of the output error
- where # is the number of plant poles and m is the number of plant zeros. It was pointed out
- that the indirect adaptive controller may fail when it is subject to some unmodeiled

dynamics even with full state measurement available and the state variables of the model

and the nominal plant may not converge.

1.6.1 - Direct Adaptation

Direct adaption (Model reference adaptive control) assumes that plant parameters
are adjustable and updates the controller parameters directly. In the case of indirect
adaptation (Self tuning regulator), the adjustment takes place external to the plant. The self
turning regulator first identifies the plant parameters recursively and then uses these
estimates to ‘lupdate the controller parameters through some fixed transformation. In this
case, w =r and @, ¥ are in turn defined by ¢ = 4, — 4, v = B, — B with columns o, Y.

¥ respectively. Then, Equation (1.3) becomes |
b= At .
where [ = Ox +'Fr.
It is seen that (1.10) can be satisfied if
&7 = —x, - Px, (i=1,..,n) (1.12)

ul _ .
¥ =—x]Pr,, (j=1,..,m) (1.13)

Ty,

Assuming that the elements A and B are directly adjustable, then (1.11) becomes
a’ =xT Px, (1.14)
oT _ T o
b =x, Pr;, (1.15)

Am and B,, are the model parameters and it is assumed that they are constant.

14
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1.7 - THE REDUCED ORDER MODEL REFERENCE ADAPTIVE
CONTROL DUE TO UNMODELLED DYNAMICS

Lyapunov equation method is very useful method to prove the global stability of
the reduced order model reference adaptive controller, therefore‘_jit has been widely used in |
this case. A Lyapunov’s second law equation was used to prove the stability of the system
with unknown dynamics in [38]. Additionally, the use of the method was extended in the
cases of reduced order adaptive systems, systems with disturbances, time varying systems,
multivariable systems and adaptive observers. Consider a first order SISO nominal plant

output with unmodelled dynamics which is given as

x,(s)= b u(s) (1.16)

where parameters b and a, are unknown constants of the reduced order plant. The actual
response i§ modelled as the output of the nominal plant, with some unstructured dynamics
represented by a bounded operator D, :

xp(t) = x,(t)+Dau(t) - (1.17)

A reference model is defined as

x,.(s)= il r(s) ' (1.18)

s+a -
where a,, > O arbitrarily. Consider the linear model following control (LMFC_) law which
was studied in [39]. In the case of LMFC the feedforward part was represented by a
positive (or strictly positive) real transfer function. This ensures the global stability (or
global asymptotic stability) of the system. The LMFC law is
u=—-k x+kr , (1.19)
where k. , k, are the feedback gain and the feedforward gain respectively, k. € R™,

k, € R The input signal is given as

u=6"¢ (1.20)
de

— =k , 1.21

o ™. (1.21)

where 6=[6, 6,] =[, k.| is the adjustable parameter vector and ¢ = [r -] is
the regression vector, r is the reference signal and x, is the reduced order plant output

signal in Fig. 1.3.
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Fig. 1.3: Block diagram of a model reference adaptive control system (Taken from [42])
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The controller generates the input u(r) of the plant, using x_{r}, x,(¢) and »(t). The
error between the reduced order plant and reference model output, x,(r) =x,,(¢)- x,(?),
tends to zero asymptotically. The output error signal is

X, =x ~x, | (1.22)

Equation (1.21) can written as

d6 _— | o
— +*oGp)o"6] = ke, (1.23)

Equation (1.23) separates the behaviour of the parameters from the other states which in
this equation are hidden in G and ¢ . In this equation the rate of change of the parameters

is governed by the constant & and the rate is quadratic in the components of ¢ . This

indicates that there are problems in controlling the rate of change of the parameters unless
the vector ¢ is bounded.

The sensitivity of an adaptive system in the presence of unmodelled dynamics and
nonlinearities can be minimise if the real plant and model parameters converge during the
operation. In general, exponential stability of adaptive algorithms is achieved when the
reference input is PE; this will guarantee satisfactory stability properties of the adaptive
systems. Stability of the adaptive control was studied in paper [46]. It was shown that the

system is guaranteed to remain stable in the presence of unmodelled dynamics,
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- disturbances, nonlinearities and parameter changes. It was suggested that if the adaptive

system is exponentially stable, it can tolerate certain levels of disturbances. In practice, it is

- commonly believed that parameter convergence is also an important condition for stability

" of the system.

In the case of model reference adaptive control,.the designer selects an
appropriate reference model transfer function. The control aim is to design a control
systém to get the plant output x,(r) to track the model output x,(f), in response to
reference signal r(¢) driving the model.

The stability of the adaptive controller in the case of unmodelled dynamics very
much depend on the condition when the parameters of the real plant and reduced order

model are convergence [40]. The loop transfer function can be written as

L(s)= (am —ap)/ (s+ap), then for the sake of stability the unmodelled dynamics and

nonlinearities, D, (jw) should satisfied the following condition:

_ ‘ Jo+a, 1
Da(Ja))k‘(jaJ +ap) X (am _ aP)

for all @ > 0. Condition (1.24) brings a bound on the model parameter, a,, , and in general,

(1.24)

on the bandwidth of the model. After the plant and model parameters convergence:

uGa) 22 % (o) (1.25)

»
The term D, ( jcu) is negligible since its frequerncy is usually above the model and plant
bandwidth, so that (1.25) can be written as:

u( jw)~r(jw) (1.26)
Equation (1.26) suggests that the disturbances term due to unmodelled dynamics,
nonlinearities and parameter variations can be minimise provided that the spectrum of the
reference signal is chosen according to the model and the plant bandwidth.

The nature of the reference signal inﬁbortant in the case of adaptive systems with
unmodelled dynamics. If the reference signal is square wave then only one parameter of the
system can be determined: [41]. The situation is different under sinusoidal reference signal
In this case, it is possible to have an unique equilibrium point since a sinusoidal reference
signal is persistently exciting of second order. Additionally, two parameters of the plant

can be determined [42].
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1.8 - THE REDUCED ORDER MCS CONTROL

The reduced order MCS control can be described as the nominal MCS control

~with some unmodeiled dynamics. In this case, the unmodelled djnamics are considered as

- internal disturbances in the plant.

The Minimal Control Synthesis (MCS) algorithm was originally developed as an

.. extension to the Model Reference Adaptive Control (MRAC) algorithm of Landau {43).

" The MCS control does not requires plant dynamics parameters for implementation, and it

still guarantees global asymptotic stability of the closed-loop system [44], {45]. The MCS
control was first proposed in 1990 [46] as a form of direct adaptive control. The algorithm
has been implemented on a variety of plants, such as robotic manipulator motion control,
electrohydraulic servo system control, materials testing machine control (stroke/stress
control), chaotic systems control,... etc.

The closed-loop stability proofs have been presented for 2a large class of
electromechanical plants with Lagrangian dynamics, despite the fact that no prior
knowledge was required concerning the nominal values of the plant parameters. The
implementation of the MCS control requires a minimum amount of information about the
plant parameters.

Since 1990, significant extensions to the basic MCS have been presented
(including a decentralised version), together with sets of implementation studies. An
overview of the algorithm and its extension was studied in [47]. In this paper, the predicted

performance characteristics of MCS for all cases were matched in practice.
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Fig. 1.5: The MCS with unmodelled dynamics

The reduced order MCS control can get unstable, if the MCS control weights o and S
have very big values.

The Minimal Control Synthesis Identification (MCSID) algorithm [48], enables
on-line identification of a linearised model of plants dynamics, based upon the MCS
parameters (gain). It was emphasised that these parameters are not required for the MCS
control to function; instead, the parameters might be required for simulation exercises,
conventional controller designs and they can also be useful for plant diagnosis, monitoring
and fault detection under closed-loop control.

The aim of MCS is to achieve an excellent closed-loop performance despite the
presence of planf parameter variations, external disturbances, plant nonlinearities and
dynamic coupling within élants, in a similar manner to MRAC. However the MRAC
algorithm requires plant model identification. The designer is not required to synthesise the

MCS control gain, since this is done automatically by the algorithm, given arbitrary (often
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iero) initial conditions. The MCS control can adapt continuously to the unmodelled
dynamics, plant parameter changes and external disturbances.

The MCS control will be implemented to the electrohydrautic actuator plant in a
V.reduced order form in Chapter 5. The plant has a third order nominal transfer function.
Normally third order MCS control is required, since the plant itself is third order, but the
second order MCS will be implemented on the plant. Another application of the reduced
order MCS control will be load control of the ESH material testing machine in Chapter 6.
In this case the nominal plant had second order transfer function and the MCS control will
be implémented in a first order form. It will be shown that the reduced order MCS control

deals the nonlinearities and parameter changes in the plant.

1.9 - APPLICATIONS OF THE MCS CONTROL IN
ELECTROHYDRAULIC FIELD

The MCS control was implemented first time on a servohydraulic materials
testing machine in [49]. Comparative robustness tests were conducted between the MCS
and P+1 control, when the plant subject to supply pressure changes. Additionally, the
reduced order MCS algorithm were introduced for the first time. The reduced order MCS

control was implemented in SISO form and it preserved the system stability in the face of

the unmodelled dynamics and parameter variations in specimens and the plant itself.
Adaptive control has been widely used in closed-loop materials testing
application. Nonlinear nature of materials under load or strain control due to the changes
molecular structure of the specimen and the changes in environment make this applications
good candidates for adaptive control. Another example is low cycle fatigue testing in
which the stiffness of materials changes each cycle and this can be represented by a
nonlinear relationship [50] and using adaptive control in this case can prevent instability of
the system due to the unknown disturbances, unmodelled dynamics and nonlinearities. The

stability of the reduced order MCS control will be analytically proven in Chapter 4.
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1.10 - CONCLUSIONS

In this chapter a review of model reference adaptive control (MRAC) and
duced order MRAC have been presented. Another important class of adaptive
ntrollers is the self-tuning regulator. Compared to self-tuning controllers, MRAC
algorithms are simple to implement due to the absence of on-line estimation techniques.
Additionally, in the case of the MRAC approach, the error may still converge to zero
Without any need of estimating the plant parameters in real time. These advantages can
clearly be seen in nonlinear plants.

. In MRAC, the basic idea is to drive outputs of an unknown plant to a known
reference model whereas in self-tuning controllers the basic procedure is to select a design
for known plant parameters. Therefore, usual assumptions in self-tuning regulators are that
" the plant is linearisible and the control signal is sufficiently rich in frequencies. However, in
real life these assumptions may not be valid e.g. the plant is nonlinear or the control signal
may remain constant over a long period of time. These could lead to the generation of an
incorrect estimator model. A

Lyapunov functions are very useful tools to synthesise adaptation laws. The
functions offer global stability properties for adaptively controlied systems without any
restrictions either on the initial conditions of the errors or on the reference signal. The
disadvantage of this approach is in finding an appropriate Lyapunov function. ‘

It has been assumed that the reduced order adaptive controller is standard
adaptive controller in which the controlléd plant contains unmodelled parts in its dynamics
and later on the unmodelled dynamics are treated as a disturbances in the plant. It is shown
in this chapter that the reduced order model reference adaptive controller can be robust if
the controller gains are tuned so as not to excite the frequencies in the unmodelled part of
the plant and additionally, the input signal should be sufficiently enough in the mid-
frequency range. |

Hydraulic systems exhibit significant nonlinearities, therefore a linear controller is
not good enough to give sa:tisfactory results. The linear controller can only be optimised
for one operating point. It has been shown that the model reference adaptive controller

performs very well in electrohydraulic system control. The controller can adapt rapidly to

changes in load and supply pressure.
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A greater variety of material testing situations need to be considered, for instance,
gsts involving higher test frequencies and test involving nonlinear specimen deformation
haracteristics such as low cycle fatigue tests. Therefore using an adaptive controller in
iaterials testing has many advantages, especially a model reference adaptive controller
e.g the MCS control). In the case of self-tuning control, higher test frequencies would
lace greater demands on the on-line identification scheme since servovalve dynamics and
ydraulic and structural resonance’s may be excited by the test signal. For the MCS
“control this in not the case, since the MCS does not need on-line or off-line identification
cheme.

The MCS control has been used to control the electrohydraulic actuator plant and
'ESH material testing machine. The MCS control is implemented in a reduced order form in
_"_both cases. Application of the MCS control to those systems will be studied in detailed in
Chapter 5 and 6 respectively.

_ Much of the existing research concerns either algorithms, structures or specific
applications and a great deal more needs to be understood about the dynamic behaviour of
adaptive systems. Although, adaptive control has been used in large scale of systems,
further developmént is required before it widely adopted in industry: Firstly, to have fast
adaptation without large tuning transients. Secondly, it is important to develop an adaptive

controller which preserves the stability under wide range of conditions with any demand

signal. Finally, to have an adaptive controller which is easy to implement.

: The MCS control has a very simple implementation procedure, hence! the design
{ of the controller is easy and as it will shown in Chapter 4, it is stable in the presence of
external disturbances, plant parameter changes, nonlinearities and high frequency

unmodelled dynamics in the plant. Therefore, the MCS control can be a good option for

industrial systems control.
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CHAPTER 2

HYDRAULIC SYSTEMS MODELLING

2.1 - INTRODUCTION

The propose of this chapter is to show the importance of hydraulic systems

odelling and simulation. The simulation of a hydraulic system control helps the designer

16 choose the suitable parameters satisfying the desired closed loop response. Therefore,

thc determination of the ranges of the controller parameters enables the designer to set-up

: rules for building up an effective hydraulic system based on model reference adaptive

control.
Hydraulic control systems have several advantages over other types of systems. A

comparatively small size hydraulic actuator can produce very large forces or torques to

provide rapid acceleration or deceleration of a heavy load. For the same
and considerable reduction in size and weight

power, hydraulic

actuators are lighter than electrical motors

can be achieved. This fact is making their use attractive in situations where lesser weight is
more acceptable, such as aircraft and missiles. In addition, hydraulic fluid can be used to

carry away the heat generated in the system and it also acts as a lubricant

Later in this chapter the electrohydraulic actuator plant is modelled and simulated

by Simulink. The P+DFB and MCS controllers were implemented on the model in

Simulink and good position responses are generated.
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2.2 - SERVOHYDRAULIC SYSTEMS

The dynamics of servohydraulic systems are generally nonlinear and vary with

ifne. The nonlinearity is mainly due to the fact that the hydraulic fluid flow rate through an

orifice 1s proportional to the square root of the pressure difference across the orifice.

Coulomb friction and stiction between the piston rod and the sealing are other sources of

nlinearity. The parameter of hydraulic systems change depending on many reasons, such

as temperature changes of the hydraulic oil, air content, mechanical wear and leakage of

the system. Nonlinear aspects of servohydraulic systems make adaptive controllers such a

good candidate in this field [1].

Hydraulic systems are preferable in many cases due to the fact that for the same

~power they have less weight and smaller size in comparison with other types of systems.

However, they have some disadvantages such as, the hydraulic power is not immediately

“available and leakage in the system can cause fire hazards. In order to prevent fire hazards

fire resistant hydraulic fluids are commonly used in the mining industry and in power

stations which are working in the high pressure.

For a quite hydraulic system, it is more desirable to have less transmission

vibration from the pump. The hydraulic lines transmit both the pump vibration and the

pressure fluctuations to other parts of the system such as, the actuator, the servovalve, the

load mass [2]. As a result these parts of the systems vibrates more than the pump which

.- cause the structural vibration.
‘{ Flexible hoses are normally in use to connect the pump to the actuator, which are

causing some disturbance but they also provide isolation of vibration, and to a lesser

extent, isolation of pressure fluctuation, Noises in hydraulic systems arc a serious problem

which can be prevented by decreasing pressure fluctuation. The isolating effect of hoses

were investigated by using different types of wave transmission in [3]. The wave properties

of a single steel braid hose, double steel braid hose, four spiral steel hose and synthetic
fibre braid hose were compared in this work. In comparison with other type of hoses, the
texiile hose gave the best isolation of pressure fluctuation, although it was not much.

The steady-state errdr always exists in hydraulic actuator position control systems
p between the flow and the position of the actuator. The flow is

due to nonlinear relationshi

proportional to the velocity of the actuator. Additional nonlinearity exists if the system has
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a single rod actuator. In this case the flows to the first and second chambers of the
actuator are not equal. Another nonlinearity in the system is the load mass. In [4], an
underlapped servovalve was used to derive a single rod actuator hydraulic system and
dynamics of the system were simplified and improved by neglecting the some parts of the
system. It was suggested that the effects of load inertia and fluid compressibility can be
neglected in this kind of system since the load mass is small.

A proportional relief valve was used in a single rod actuator electrohydraulic
system to get a zero position error in [5]. The load force and supply pressure were
adjusted according to the changes in the load force. The technique concentrated on the
need to have symmetrical underlapping of the servovalve spool, which enables the position
error to be eliminated. Using an adaptive controller can be a satisfactory choice in this case
due to the fact that the controller can adapt itself changes in the plant dynamics.

Servovalve derived hydraulic systems have faster dynamics and high reliability
therefore, they are in common use. However this kind of systems have low efficiency in
compﬁrison with load sensing electrohydraulic systems. In [6] load sensing was applied to
an electrohydraulic system. It was demonstrated that the technique decreased the energy

consumption and improved the dynamics the hydraulic system.

2.3 - MULTIVARIABLE HYDRAULIC SYSTEMS

MODELLING AND SIMULATION

In order to have a reliable multivariable (MIMQ) hydraulic system the following
factors should considered: i.e. changes in the environment, the topology of the network,
structure of computer modules, and the software quality. In a first place, a reliable system
requires a good design method which will produce a model that will be close agreement
with the real system, Hence, the use of an appropriate communication protocol and system
scheduling become important in the cése of MIMO hydraulic systems. Also, having a
proper error detection mechani_sm can be very useful.

A multivariable Work;naster hydraulic robot was modelled in a simplified form for

the computed-torque and variable-structure control applications both in simulation and in
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practice in [7]. The mathematical model of the system was later examined to improve the
working conditions of the rea! hydraulic robots.

A multivariable hydraulic system (multiarm forest oOf tunnelling machine) was
controlled by using distributed computer control in {8]. It was demonstrated that the speed
and reliability of the system can be improve due to distribution in the multivariable system
structure. Additionaily, the method reduced the use of cabling therefore, the cost of the
system was decreased. In the case multivariable hydraulic systems, adaptive controller (in
deceniralised form) strategies can be a good alternative to OVercome the delay and

disturbance term due to large distribution of these sort of systems.

2.4 - HYDRAULIC SYSTEMS MODELLING AND SIMULATIONS

Modelling and simulations are very useful tools in hydfaulic systems design and
control due to the fact that it can help designer to choose suitable configuration of the real
system. The system can build in the computers memory and necessary changes and
improvements can be done very easily before the real system is build. The simulation of
hydraulic systems can be also very helpful in the case of choosing suitable controller gains
[9]. The simulation results will show how close the mathematical model is to the real plant.

1n order to have satisfactory simulation results it is necessary to have detailed and
accurate mathematical model of real systems. There are many different computer based
design software package which have been used hydraulic systems modelling and

simulations. Some of these methods are given below.

2 4.1.- Computational Fluid Dynamics (CFD) Simulation
Techniques

Computational Fluid Dynamics (CFD) simulation techniques were used to model
the impedance characteristics of simple cylindrical and sharp-edged orifices in [10]. It was
demonstrated that the impedance characteristics was relatively independent of mean flow
in non-cavitation condition. On the other hand the resistance is strongly dependent on the

mean flow. Edge and Johnston have investigated the impedance characteristics of some
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hydraulic components [11], [12]. They modelled restrictor valves, single-stage relief valves
and accumulators simply by using inductive, capacitive and resistive characteristics of the
components. For some complex components, such as two-stage relief valves, the
impedance characteristics were developed based on the physical configuration of the real
component. However satisfactory responses did not generated, the responses which was
generated from simulations was not close agreement with the measured impedance of the

relief valves.

2.4.2 - Using Neural Networks in Modelling of Hydraulic
Systems

Neural networks have been used in the case nonlinear system modelling and
simulation effectively. Hydraulics systems have nonlinear dynamics due to the nonlinear
relationship between the flow and the position of the actuator and the nonlinear
characteristics of hydraulic fluids For that reason, artificial neural networks can be used in
the case hydraulic systems modelling and controt [13]. In this work the method was also

used to model the pressure relief valve and variety of servovalve controlled motor systems.

2.4.3 - Transmission Line Modelling Method

Over decades transmission line modelling (TLM) has been applied to variety of
electrical, mechanical and fluid power systems. An electrohydraulic systems contains all
these elements therefore, the method was used to model the hydraulic, mechanical and
electrical parts of the plant in [14]. In this work the parallel simulation method was used -
together with TLM method which increased speed of the simulation. Accurate models for
cavitation and friction were developed using TLM methods and verified experimentally. Tt
was demonstrated that by using transmission line modelling technique the simulated model
gave responses which are close agreement with the real plant. Normally, the method of
characteristics (MOC) required more computational effort than TLM. In TLM, the

component models were simplified due to use of the pressure and flow equations at the
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transmission line and incorporated into the model. Hence, the line models were not solved
separately therefore, the total number of models was reduced.

TLM method was proposed for modelling of the fluid flow in hydraulic pipelines
by using the distributed parameter model in [15]. In this work, a method proposed to
climinate limit cycle conditions in hydraulic control systems. It was suggested that limit
cycle conditions were a strong function of certain plant parameters such as backlash in the
actuator and nonlinear transmission line therefore, it can be eliminated by ignoring (the
unmodelled dynamics) the certamn parts of the plant dynamics. It was pointed out that if the
hydraulic control system consisting a nonlinear hydraulic transmission line or the hydraulic
actuator secured by a mechanical structure, it may result in fimit cycle conditions.
Additionally oscillations along the pipelines may be excited by a nonlinear element which
may lead instability. In order to overcome this problem the pipe length should be kept as

short as possible.

2 4.4 - Fault Analysis Method

Transmission line modelling method tended to be based on heuristic knowledge
(empirically derived shallow knowledge). It was suggested that, for the sake of more
accurate models, detailed knowledge (deep knowledge) should also be considered [16].
The method was applied to an electrohydraulic control system modelling and simulation by
‘using an object oriented library in which the components were modelied base on deep
knowledge. It was pointed out that although the method has many useful features still
there were problems describing the system in the software. Additionally, there were

difficulties choosing the combination of unexpected and unwanted conditions.
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2.4.5 - Failure Mode and Effects Analysis and Fault Tree
Analysis

In [17] Failure Mode and Effects Analysis (FMEA) was used together with Fault
Tree Analysis (FTA) to model the unwanted features of a electrohydraulic control system
In this method, each component was modelled independent of any particular circuit
configuration as a self-contained unit then, the connectivity information was used to form
any type of hydraulic systems in the computers memory. The method did not only
modelled the known unwanted effects of the component dynamics, it also modelled the
normal effects of the component dynamics. In the case of qualitative simulation, some
components were selected as active such as electric motors, accumulators, etc. which are
capable of introducing energy into the system and when simulation started, the software
activated components, for example an accumulator switched on. The software has the
capacity to model the behaviour of the components by using the descriptive terms
therefore it has comparatively less computation. Additionally it was observed that it is very
flexible for hydraulic systems modelling, any type of systems can be formed by using
object-oriented software, any changes can be made easily while the simulation running.

FMEA program was indicated the worst possible, or most extreme, effects of a
fault. In real system, the effects may not as severe as predicted, due to the fact that the
simulation method was based on very detailed qualitative reasoning of the system. The
method was shown the more significant probabilities and features of the system. The
method was performed manually which was subject to human mistakes. It was suggested,
that FTA is necessary together with the application of heuristic knowledge and active

testing of a hydraulic circuit, for a good modelling.
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2.5 - CONSIDERING THE EFFECTS OF THE BULK MODULUS OF
HYDRAULIC OILS IN THE CASE OF HYDRAULIC SYSTEMS
MODELLING

If the pressure changes are significant in the electrohydraulic system then, using
the pressure dependent bulk modutus can make models more accurate. In [18], the bulk
modulus in high pressure pipes were measured pressure-volume-temperature methods

which is given as follows

e =¥ @.1)

where ¢, is the speed of sound in the fluid, N is the effective bulk modulus and p 1is the

density of the fluid.

Generally, a constant value of the effective bulk modulus have been used in
hydraulic systems modelling. Therefore, it is assumed that the effective bulk modulus is
constant during operation of the system. This assumption is not very accurate due to the
fact that the system loading can vary significantly, e.g., the pressure in the actuator varies
periodically from the supply pressure to the return pressure. If a hydraulic system is subject
to large and sudden pressure changes, then it is more reasonable to use the pressure
dependence effective bulk modulus for accurate plant modelling and simulation. It was
demonstrated by Edge and Darling [19] that, if a constant effective bulk modulus value is
used, satisfactory simulation results are difficult to obtain.

Following factors are considered to have influence on the effective bulk modulus
air content of the oil, oil pressure, oil temperature and pipe rigidity. Air content of a
hydraulic oil depends on the pressure and temperature in the system. Air exists in hydraulic
systems either in entrained or dissolved form and except very high pressures dissolved air
does effect the performance of the system. The effective bulk modulus affected badly when .
entrained air present in the system due to the bigger size of the air bubbles in the hydraulic
oil.

The temperature of the hydraulic oil influences the effective bulk modulus,
because it effects the dens1ty of the air content inside the hydraulic oil. At high
temperature, the effective bulk modulus increases due to the size of small air bubbles in the
hydraulic oil. The effect of oil temperature can be ignored when the oil temperature is

approximately constant during operation of systems. The affects of pipe rigidity also
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ignored in many practical applications and it is assumed that either the affects are
insignificant or rigid pipes are in use.

The effective bulk modulus value of the oil varies depending on oil pressure
significantly. This was clearly demonstrated by Yu and Lu in [20]. According to the
authors’ experience, the effective bulk modulus value of a particular hydraulic system was
determined to be 1132 MPa when the load pressure was equal to 1 atmosphere, 1631 MPa
at 5 MPa and 1686 MPa at 10 MPa. The effective bulk modulus was increased when some
entrained air become dissolved air due to increase in the hydraulic oil pressure.

Accurate modelling and simulation of an electrohydraulic system was achieved by
using a pressure dependent effective bulk modulus in [21]. The work concentrated on the
relationship between the effective bulk modulus and oil pressure in the hydraulic system
and other factors such as oil temperature, air content of the oil were assumed to be
constant. It was demonstrated that the method is efficient, convenient and produced more
accurate model. Hence, if the pressure in the hydraulic system is varying dramatically with
working conditions then using the pressure sensitive effective bulk modulus may produce

more accurate models.

2.6 - MODELLING AND SIMULATION OF THE ELECTROHYDRAULIC
ACTUATOR PLANT BY SIMULINK

Simulink is a program for simulating dynamic systems. Simulink has two phases
of use: model definition and model analysis. As a extension to Matlab, it works inside of
window's environment. To facilitate model definition, Simulink adds a new class of
windows called block diagram windows. In these windows, the model is created and edited
principally by mouse driven commands. |

Extensive use can be made of Matlab’s Control Systems Toolbox and Simulink
throughout the design and modelling processes. The system can be modelled using Matlab
and Simulink and subsequently the controller can be implemented using analogue models
[22]. The paper describes the design methodology used to produce a multivariable control
system and illustrates the differences between the predicted and actual performance of the

real electrohydraulic actuator plant.
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The model can be defined or analysed either by choosing options from the
Simulink menus or by entering commands in Matlab's command window. With the

simulation running, the results were directed to the Matlab workspace.

2.6.1 - The Electrohydraulic Actuator Plant

The electrohydraulic actuator plant, which is presented in this chapter, has been
developed in the Aerospace Engineering Department at Bristol University. The increasing
demands from modern control systems necessitate greater flexibility between controlling
elements. This has resulted in the combining of electrical signalling with fluid power
actuators.

The output from the servo amplifier actuates the torque motor attached to the
pilot spool. Supply pressure is directed to both spool valves, so that the product of the
supply pressure and the main spool area produces the force to move the main spool. The
output flow from the main spool is used to drive the ram piston, which is also provided
with a feedback loop. The flow force varies with the load pressure in the actuator.
Switchable accumulators are situated either side of the actuator. The accumulator is an
energy storage unit allowing hydraulic oil systems to use the energy storage capacity of
compressed gas. The accumulators consist of a high pressure cylinder containing a rubber
bag. The bag is normaily charged with an inert gas {normally nitrogen). As oil is pumped
into the cylinder around the bag the pressure will rise. The accumulators can be used as a
reserve of power in circuits, in which there are short duration high flow demands. The
accumulator can also be used as a low pass filter, helping to smooth out fluctuations in

pressure and flow due to the pump action [23].
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2.6.2 - Dynamics of the Plant

The dynamic analysis of the hydraulic system can be made by identifying their
differentia! equations of motion. Forming an equation for a hydraulic system is the first
step for design and control. Before building a real system, however, it is important 10
determine whether the system will be stable.

Tt is necessary to examine the parameters, vanables and differential equations of

the system. With the exceptions of geometric and kinematics relationships, the equations

L
7
u Acc, adint Ace. adjest
——" Arpiifier Servovalve
IMEin
spool
1
Pilot spoal valve

o1

Fig. 2.1: The electrohydraulic actuator plant

reduce to either equations of flow (2.4) and to equations of force {or torque, 2.8). In this
case of the electrohydraulic actuator plant, the equation describing the system dynamics
were derived analyticaily using the equations for flow and torque [24].

The servovalve is described by a linear transfer function which is published by
Moog [25]. The electrohydraulic servovalve is a highly nonlinear device that exhibits high

order, nonlinear response. It has many parts which have so small shape and this is
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analytically non-ideal. In many cases, it 18 appropriate for more accurate hydraulic system
design to use empirical approximations of the measured servovalve response. A very
adequate nonlinear representation for ihe servovalve is given in Fig. 2.5. The plant

dynamics are described by using the actuator and servovalve dynamics.

2.6.3 - Dynamics of the actuator

The flow equations:

Flow in:
Q1=Ai+K£l | (2.2)
( : N :
and flow out:
0, = 4x -V, %— (2.3)
O, and Q; are flows into chambers C, and C; in Fig. 2.2. The pressure difference 1s
AP=PF - P, |

and similarly

AP =P -P, (2.4)

Gy

Fig. 2.2: Hydraulic ram
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" 2.6.3.1 - Nonlinear Description of the Actuator

The force equation 1s:

AP —4,P,— fi~-T=m3% (2.5)

£, is the coefficient of viscous friction, m, is the mass and J is the

where T =
lcos@

moment of inertia. The system has a single rod actuator. The area in the first chamber of
the actuator is: |
.4
' 084
In this diagram x = Isin® and p =/Icosf and F = AF ~ A, P, . For the sake of simplicity

the averaged value of O, and (), are used in modelling to produce the load force in the
actuator. The averaged hydraulic volume flow:
Vav (‘P! - PZ)

2N

where, A, and 4, are the effective area of the first and second chambers of the ram

Q, = A%+ (2.6)

respectively, N is the bulk modulus of the hydraulic oil and V is the average volume in the
ram. The volume (V) is provided for the liquid downstream of the valve in one chamber

or the other when the ram is in the middle piston (Fig. 2.2). The volumetric coeflicient:

ko= _ 2.7

where V_is the effective half volume, ¥, = A,,x,,, where X,, is the maximum half travel of

av m?

the ram and A,, is the average effective area of the ram. It is always desirable to decrcase
the total volume, V,,. In a linear actuator, Vs, = VY, + V.., where V, is the dead volume
corresponding to the ducting between the distributor and the actuator and to other
intermediate volumes. The volumetric coefficient, k, can be low as 1.2 for large rams,

while for small rams it is rarely less than 1.5 or 1.6. For the servohydraulic plant & is taken
1.4[24). Q,, Q, areflowsinto chamber C, and C,, Equation (2.5) can be rewritten as:

A (P = P)- fx—T=m3% (2.8)
For the hydrautic system the transfer function of the ram is obtained by eliminating the

intermediary pressure variable between the flow equation and the force equation.
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Fig. 2.3: The hydraulic actmator and load

From (2.6), the pressure difference across the actuators chambers is

. .y 2N .
(A - b)) = _V__(Qf - wa) 2.9
{ Integrating (2.9) with respect to time gives:
| 2N N
(P, —Pz):jﬁgf — A, %) (2.10)
From, (2.8) and (2.10)
2N . oJe .
AW[—I—/:(QI - Am,x)dx) -fx- Cond m,% (2.11)
So, the dynamic equation of the actuator is:
. AL (2N f.l[J'éj
== — A x| =X — 2.12
g m, U Vo (Qf ~ ) ] [mp] m, \lcos® 212)

which becomes:
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i3 a) (27 (gl 2

This equation is described schematically in Simulink as follows:

Integrator1 Integrator2 out_1

K - |

Gain7 Integrator3

N\ GainS

-

Product

Gaind Derivative Derivative1

Fig. 2.4: The block diagram of the actuator in Simulink.

. A
In this diagram: X :ZF]! , M= (—f"—J , N= A , J is the inertia of the system and
m
P

m,

av

f 4¢N4, ) . :
§===, where f, = T The condition for stability can be represented fairly
mp ¢ av

0]
accurately by the relationship £ ) 7 where, the critical frequency of the system,
@

2NA;
@, = _In this case the bulk modulus of the hydraulic oil, N is 2. 9x10" N/, the

V,m

effective area of the ram, 4 | is'11.57 cmz, the mass, m, is 6.7 kg, the total half volume, V'

s =84 cm’. The value of @, is 94 rad/s and D¢ 2025, and @ 1 is the open loop gain.
an :
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Then, the damping coefficient,{ was chosen to be 0.24. The flow rate of the rig, Ona 18
14.7 t/min, the valve sizing constant, X is 0.0598 and the input current 7, is 40 mA. The

supply pressure of the electrohydraulic actuator plant P is 110 bar, and the inertia of the

system is, J is 0.44 kgm'. The servovalve is described by the nonlinear third order model

shown as below:

1 b ; A 12.087] X
27*9159?33053290(} '> ™ > 807 9
in_1 Gain s S + 1

Sum Gaint Saturation Gain2
Transfer Fcn Transfer Font Sum1 out_1

/10147

Gain3

in_2 Gaind

Fig. 2.5: The third order nonlinear dynamics of the servovalve

The servovalve is modelled by a third order transfer function (the data received
from the manufacturing company). Using flow equations and Newton’s law the actuator
dynamics is described by a second order nonlinear model. This to separate model linked by
using the relationship between the flow and force. Hence, ¢lectrohydraulic servo plant is

described by a nonlinear fifth order mode! by using Simulink as shown in Figs. 2.4 and 2.5.

2.7 - SIMULATION TESTS RESULTS

The electrohydraulic actuator plant was modelled by Simulink. Dynamic
simulation plays vital and very visible role in the hydraulic system design process. The
modelling is important to investigate the dynamic behaviour of the system. The plant is
modelled by a fifth order nonlinear model. The mathematical model of the plant controlled
in Simulink under second order MCS control (Fig. 2.6).

The plant described by the following state-space equation:

%(t) = Ax(f) + Bu+d(t) (2.14)
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For a given settling time, 7, = 0.25 s, the second-order MCS reference model is

S (1) = ApX(0) + By (1) (2.15)
0 1 0
where A4, = and B, =
m | —256 32 256
The MCS control signal, u:
W) = K(t)x() + K, () (?) (2.16)
together with
K(t) = quexrdr + fy,x"
° (2.17)
K,(t)=[ay,rdz + fy.r
@ o
Form the output error signal:
Ye(t):ce(t)xe(t) (2.18)
The hyperstable condition is guaranteed if:
C,=B]P _ (2.19)

where B, = diag|B,,, .- B, B.=[0. ... 0 I

For second order reference model

b

and P is the positive definite solution to the Lyapunov equati-on
{ PA, + ALP=-0 ; 0>0 (2.20)
0 is the arbitrary positive-definite matrix, it was chosen as
10 O
o-[ ']

then, the output error matrix is

C, =[0.0195 00162]
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Fig. 2.6 Block diagram of the electrohydraulic actuator plant under second order MCS.
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Fig. 2.7: The model of the prant under-P+DFB control, supply pressuré 110 bar
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The results of the model of the electrohydraulic actuator plant under P+DFB
control are shown in Fig. 2.7. The settling time was #, = 0.25 s, the reference signal was a
square wave of frequency 0.25 Hz, ké =1 and k; = 0.1 and the amplitude was 1 volt. The
position responses and gains from the simulation of the electrohydraulic actuator plant
behaviour under the MCS can be seen in Fig. 2.8 a, b. The settling time, #, = 0.25 s, the

values of @, [ were {10, 1}, the reference signal was a square wave, the frequency was

0.25 Hz and the amplitude was 1 volt.

The position responses and gains of the real plant under the MCS can be seen in
Fig. 5.12 (Chapter 5). The reference signal was a square wave, settling time was
t,= 0.25 s, frequency was 0.25 Hz, amplitude was 1 Volt and the values of a, [ were
£0.001, 0.0001},. The corresponding results of the real system under P+DFB are shown in
Fig. 5.11 (Chapter S), together with a proportional gain, k, = 1 and a derivative feedback
gain, k,= 0.1, ' ' S

There is reasonable correspondence between the simulated and the actual system
responses, indicating that the mathematical model of the system, which was calculated
analytically and modelted by Simulink, is accurate.

The steady-state error is occurred in both the real and model position responses
due to the relationship between the flow and position. Additionally, the system has a single
rod actuator and the mass at the end of the actuator has nonlinear effects. The real plant
responses are more oscillatory in both the P+DFB and MCS control than the simulated
plant responses. The reasons of this steady-state error are firstly, in modelling the volumes
inside the actuator chambers are assumed constant during operation, then for the sake of
simplicity the averaged form of these volumes is used as the effective volume. In fact, the
volumes in the first and second chambers are not just equal (due to the use of single rod
actuator) also they change during dynamic operation of the plant. Secondly, the constant
bulk modulus was used in Simulink models to bring the simplicity in to modelling which is
not the case in real plant operation. The bulk modulus changes due to the changes in the
pressure inside the actuator and servovalve. There so many other factors which are not
considered in this modelling like, the nonlinear dynaxﬁics of the accumulators (the
accumulators dynamics are not included into the model), the plant rigidity and the

cavitation in the fluid.
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In the case of the P+DFB control both the real and simulated plant are controlled
by using same controller gains. The adaptive weights of the MCS control was greater in
the simulated mode! due to fact that the computation of the adaptive gains and controller
itself take longer time in Simulink and using smaller adaptive weights makes this process
even slower. In comparison to the MCS control P+DFB control has a simple structure

therefore the calculation in Simulink was rather quick.

2.8 - CONCLUSIONS

At the most basic level, modelling of hydraulic systems can enable the users to
explore the various configuration options and decide which system configuration needs to
be used to ensure acceptable performance. Once this decision has been made, the sizes of
the hydraulic system components such as hoses, hydraulic pump units and directional
control valves can be established.

In the case of adaptive control cf hydraulic systems, since both the controlled
system and the controller are nonlinear, it is necessary to use simulation to confirm that the
control strategy is correct. The results from the simulation must of course be validated
with experiments.

For industrial fluid power systems, it is ofien possible to carry out much of the
initial design work using steady state performance calculations. Simulation can then be
used to refine performance.

Numerical simulation of hydraulic systems is used extensively as a design tool, but
in order to investigate much larger and more complex systems, within an economic time
frame, faster software and hardware required.

Reasonable good simulation results are generated in the case of both the P+DFB
and the MCS controflers from the model of the electrohydraulic actuator plant, which are
close to the real plant responses. This indicates that the mathematical model of the system
is accurate and also that Simulink can be a good option for modelling hydraulic systems

(or any other kind of systems).
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CHAPTER 3

A REVIEW OF MODEL REDUCTION METHODS

3.1 - INTRODUCTION

The reduced order MCS has a reference model of lower order than the nominal
plant model, and the modelled part of the plant matches the reference model in order.
Hence, the unmodelled part of the plant, which represents the fast dynamics of the plant
can be considered as a disturbance term. Together with the unmodelled dynamics the
stability of the reduced order MCS incorporating unmodelled plant dynamics will be
proven in Chapter 4 in the case of both SISO and MIMO systems. If the disturbance term
is large in magnitude, using EMCS (Extended Minimal Controller Synthesis) may be an
option to guarantee global asymptotic stability of the system.

Another possibility may be to use an averaging method, which gives good results
in the case of SISO first order plant but it is rather difficult to derive the stability of the
error equation if the relative degree of the plant is greater than one. It is also difficult to
derive the stability error equation in the case of multivariable systems.

Later in this chapter, linear model reduction methods are presented. By using
linear model reduction methods it is possible to reduce the order of the plant and then
implement the MCS control according to the reduced order plant parameters. Although,
the MCS contro! does not need the reduced order plant parameters, they can be still very
useful when choosing the settling time and sampling interval of the controller
Additionally, plant parameters are required in the case of comparative studies, due to the
fact that linear controller strategies need plant parameters for implementation.

In the case of the reduced order MCS control, the controller is implemented in
such way that the controlled plant is higher order than the reference model in terms of

degree. This procedure reduces the order of the plant automatically due to the fact that the
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lower order reference model will activate only the dominant part (mid-frequency range)
and it will ignore high order dynamics of the plant. For this reason, the implementation of
the reduced order MCS control is very simple and easy.

The reduced order electrohydraulic actuator plant and ESH material testing
machine transfer functions which are obtained by conventional model reduction methods
are given in Tables 3.3-3.6. These transfer functions will be compared with the nominal

model of the plants which are found from system identification tests in the case of step and

impulse energy responses. The performances of conventional mode! reduction methods

will be compared with the original plant transfer function by step and impulse response

methods.

3.2 - MODEL REDUCTION METHODS

Model reduction methods are presented in two grbups in this chapter, The first
group is adaptive model reduction methods. In this case, the model reduction procedure
takes place inside the adaptive algorithm. This is due to the fact that the adaptive control
does not require the plant parameters directly (except the self-tuning regulator). For that
reason, there is not a direct reduction in the plant order. Instead of that the algorithm uses
a lower order reference model and the plant matches the reference model in order. Two
adaptive model reduction methods are presented in this chapter: averaging method and
extended MCS control algorithm which are studied in sections 3.3-3.4. The extended MCS
algorithm is an extension of the standard MCS control and it may guarantee the stability of
the system in the face of large unmodelled dynamics. The second group is linear model
reduction methods. Most of these methods require a linear description of the plant in the
state-space form and they are studied in sections 3.6-3.16. In this case, the reduction
procedures approximate the plant transfer function to a lower order one directly.

The linear model reduction methods can be use together with the model reference
adaptive controller as well. The model reference adaptive control algorithm does not
require the reduced order plant parameters, still they can be very useful to have an idea

about the suitable controller gains, the reference signal characteristics and comparative

studies.

53




et

3.3 - AVERAGING THEORY

Averaging method was proposed to prove the stability of adaptive systems in the
presence of unmodelled dynamics, nonlinearities in {1]. Later, the method was improved in
[2], [3] and [4]. It was demonstrated in {5] that the averaged model of the system is stable
in a larger scale than the nominal plant model. Additionally, the converge of the averaged
and original plant model was investigated in this work.

The characteristic of the reference signal is important in the case of averaged
adaptive systems. The system may become unstable depending on the property of the
reference signal. The relationship between the unmodelled dynamics and high frequency
reference signals were studied in [6]. It was shown that equilibrium is not a unique point
when the input signal is not persistently exciting therefore, even small disturbances may
lead unstable responses in the presence of the unmodelled dynamics and nonlinearities in
the system. It was shown that if the input signal is persistently exciting than the equilibrium
set will be a point and this will preserve the stability of the system [7], {8] and [9].

Averaging method was used to determine the stability of a reduced order adaptive
systems with relative degree one in [10]. It was pointed out that the method is not easily
applicable to adaptive systems which have higher order transfer functions or the relative
degree greater than one. In addition, although the method works well with sinusoidal
reference signa) it does not produce the stable output responses for other types of input

signal e.g., square wave signal.

3.4 - THE REDUCED ORDER EXTENDED MCS ALGORITHM
(ROEMCS)

Model reduction methods are based on deriving lower order models of original
higher order systems by simplifying their dynamic equations. Similarly, the reduced order
MCS control uses a simpler mathematical approximation that retains the key features of
the original systems. In the case of the reduced order MCS control, the simplicity of the

controller is achieved by using a lower order reference model.
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If the disturbance term is rapidly varying due to the high order unmodelled
dynamics then it could be a good idea to use reduced order EMCS control instead of
standard reduced order MCS control. It was shown that the effects of rapidly varying plant
disturbances were substantially reduced in the EMCS [11]. The EMCS control signal has
more active nature than the standard MCS signat due to the quasi-switching term. Hence,
in some case the EMCS control may lead an undesirable oscillations of the plant states it
may even cause instability due to excitement of the higher order unmodelled dynamics.
The algorithm is applicable to the control of SISO and MIMO plants. It will be shown in
Chapter 4 that the standard MCS algorithm is stable in the presence of rapidly varying
disturbances; thus the plant-reference model signals remain bounded.

EMCS algorithm guarantees global asymptotic stability of the tracking errors in
the case of plants, which are subject to unmodelled dynamics in comparison with the MCS

algorithm. Consider a linear, SISO plant with unmodelled dynamics given as below
X, = Arx,(t)+Bru(t)+d(x”t) G.n
where 4,(f) € R™ and B.(f) ¢ R™ | d(x,,t) is the disturbance term due to the high order

unmodelled dynamics and x, :[xl ,ox, X, ]T x, € R™ . The variables

x(f) and u(f) denote the reduced order plant state vector and control input signal

respectively, where

0o 1 0 .. O
o] [o
0 0 .. O .
A()=|: , B(f)= (‘) :{') (3.2)
0o 0 0 1
b |1
|—a, —a, ~a, —ay, |
and
0
d(x,,t)= 0 = bd,
dl

The stable, reference model is given by the following state-space equation.
x,(0) = A%, (1) + B (1) (3.3)

where 4,, € R™ and B,, € R™ . The matrix 4, and the vector B,, are given by
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[0 1 0 0 |
0
0 0 1 0 .
A =| - Y|, B,= (') (3.4
0 0 0 1
bm
__aml _am2 —am3 i —amn |

The error dynamics of the closed-loop system determined by using (3.1) to (3.3) as follows

%,(1) = Ax. (1)~ (4, ~ A,)x, (1) - Bult) + B r()-d(x,.t) (3.5)
where

x,(1) = x,.()—x,(1) (3.6)
The MCS control signal is _

u = K()x, (1) + Ke(0)r(?) _ (3.7
with

K(1)= quexfdr + fyx!
A S

, (3.8)
K (t)= jayerdr + fy.r
0
Jé: ;i;’; (3.9)
where the vector & is of dimension (sx1), and is given as:
p=[o .. o 1f (3.10)
and P is the symmetric positive definite matrix solution to the Lyapunov equation:
ATP+PA, =-Q;, P>0, 0>0 3.11)
From equations (3.7), (3.5) and (3.11) a new error dynamics equation is determined as
x,=4,x, _bwTd-bw"¥ - bd, (3.12)
where
& = b ab” Px,w (3.13)
w =[xf ,]T (3.14)
and
¥ =b pb" Px,w (3.15)

From Equation (3.1) the SISO EMCS control signal, , is determined in the following

form:
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Y,

u_ = {9’" +bi‘PT}w + Nsign(y, ) (3.16)

where N is a constant scalar and the sign function is

1 if y.>0
sign(y,)=30 i ».=0 (3.17)
-1 if y.<0
and
GT:Uayexfdr, jayerdr} (3.18)
0 0 :

h, is the last {(and the only non-zero) entry of matrix b, where b, w, y. and ¥ are
respectively defined by (3.9), (3.10), (3.14) and (3.15). Following, the new MCS law
(3.16) and (3.12) become:

%, = Ax, ~bw'®-bw"¥ - b[d(x,,t) +b, Nsign(ye)] (3.19)
where @ is given in (3.13) and d(x,7) is the disturbance term then, the error x, is globally

asymptotically stable if following condition is satisfied for all 2 0 [11]. .

d(x,,t)sign(ye)+b,N|y‘j)1§ =0 (3.20)
If the term b, N is positive, then N is obtained from (3.19) as follows :
b N> max{|d(x, ) 13’—1151 (3.21)
A
and b, N> 0 for all 7 2 0. The above condition indicating that if & is sufficiently small then
bARES

the term may be approximated to 1. Hence, it can be concluded that the SISO

.|
EMCS control law, (3.16)-yields the globally asymptotically stability of the error, x, for the
suitable set values of N and & The condition (3.21) is not related to the variation of d,
therefore no matter how rapidly d is varying, suitable values of N and & ensure the global
asymptotic stability of the error x...

In similar manner to SISO systems, the global asymptotic stability of the MIMO
EMCS control was proven in [11]. The EMCS algorithm was further extended as the
purely adaptive EMCS algorithm in [12]. New algorithm estimated the amplitude of the

discontinuous switching term adaptively.

57



3.5- LINEAR MODEL REDUCTION METHODS

The reduced order models have simpler mathematical structure compare to the
nominal plant model which retains the crucial dynamics of the original system. There are
great variety of ways to reduce the order of the highef order plant transfer function. The
current linear model reduction methods uses either the time domain or the frequency
domain approach. These methods are based on the classical theories of the mathematical
approximation or mathematical concepts; such as Pade” approximation, continued fraction
method and time-moment matching method.

The model order reduction problem was very closely related to the stabilisation
problem in [13]. In [14], a model reduction method was introduced based on the
differentiation of the numerator and denominator polynomials of the higher order transfer
function. The nominal transfer function of the plant were differentiated as many times as
required to derive the coefficients of the reduced order transfer function polynomials.

Linear model reduction methods can be used together with adaptive controllers,
e.g., a mixed method of Liaw was used to find the reduced order model of the
interconnected power system in [15]. After model reduction process the plant was
controlled under the proposed adaptive controller in [16]. The proposed adaptive
~ controller implemented by using a reduced order reference model and it did not required
the plant parameters for implementation. Although, the adaptive controller required
minimum knowledge about the plant parameters for implementation still it produced good
plant output responses.

A control system with a very high order linear model will be difficult to design
and control. Therefore, using the reduced order form of the original system is more
desirable in many cases. Some of linear model reduction methods are given as below

Roufh Metho& |

Pade” Method

Initial Time Moments Method

Frequency Domfain Model Reduction Method

Dominant Mode Model Reduction Method

Davison Method
Marshall’s Method
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Stability-Equation Method

Impulse Energy methods

Singular Value Decomposition

Stochastic Model Reduction Method

Balancing Method

Optimal Model Reduction Method
In practice most of the systems work in low or mid-frequency range therefore, in most of
the applications only dominant dynamics of the plant are in use. Although, the plant can be
modelled by a high order model, if it is not working in the high frequency range these high
order dynamics will not contribute much to the plant output response. Hence, a high order
model could lead to large steady-state errors due to the fact that the plant is over
parameterised. Hence, the model reduction is vital in many control application for
satisfactory results.

Now, each of these linear model reduction methods will reviewed in sections 3.6~
3.14 and later in this chapter some of these methods will be used to produce the reduced
order models in the case of both ESH material testing machine and electrohydraulic

actuator plant.

3.6 - ROUTH METHOD

The method uses the expansion of the denominator and the numerator Routh
array of the higher order original system [17]. The method produces stable reduced order
models provided that the original plant model is stable. Routh method improves the
impulse response of the reduced order models. Let us consider 4 linear time invariant SISO
system having the transfer function

b s 4 4b
Gp (S) = . -

7 n—1
a,s" +a;5° +-ta,

(3.22)

The above equation is asymptotically stable and it can be further expanded into the

following canonical form:
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G,(s)=B.C (s)+8,C (S)CZ(S)+-'-+ﬁnC1 (s)C,(s)+-Cs (s)
= éﬂlljcf(s)

where the f (j = 1,2,...17) are constants and the C; are the continued fraction expansions.

(3.23)

Equation (3.23) was described as the alpha-beta expansion of G.(s).

C, N S (3.24)

: { Alpha Routh
Table

.0 !
o, =da, /a4
R 2 R 2 R
a,=a,/a, | 4% =% a0 a; =0, %%

2 3 2 E}
a,=al/ay | @ =a ~ %% ai =a; —a3d,

_ A3 4
a, =a,/ a,

Table 3.1; Alpha Routh table

The first two rows of the alpha Routh table were formed from the coefficients of the

denominator of GP(S). The remaining elements were calculated as follows

¢
4
FI R o B J
a; =a; a a;
i+l _ i) i
ai'=al —aa
2 4 4
! (3.25)
JE5 DY o S i R N
a, ;2= Q5 j=1-n 1

If n-j odd, the last equation in (3.25) was replaced by

alf =al (3.26)
and the o; are given by
al L
@, == > j=12,0 327
aO
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Beta Routh bl =b, b, =b, b, = b;
Table b? = b, b2 =b, b} = b,
STHTa | -pa b =b-Pel

B, =bt/al | B =bl =P B =b; - f.a,

pob/a |
B.=by/a;

Table 3.2: Beta Routh table

The coefficients f, were formed by using a tabular algorithm as shown in Table 3.2. The
first two rows of beta Routh table were obtained from the coefficients of the numerator of

G,(s). The following elements were computed from alpha Routh table as follows

B, =5 lal, j=12,...,1
_ . , 24,..,n—jfor n-  even
b:'J—)rz2 =b/ - al, 1= , I / ,
! 2,4,...,n—j—-1for n-j-1 odd (3.28)

j=12,...,n-2
The reduced order models numerator and denominafor As) and Bys) computed by the
following algorithm

As)=a, +1

Bl(s)zﬁl
A,(s)= 0, 0,s” + oy s+] (3.29)

Bz(s) =a,Bs+5,

Generally, Bi(s) and Ai(s) can be derived following equations
4, (S) =0, 54, (S) + 4, (S)
. B.(s8)= a, 5B, (5)+ B2 (5)+ B
A (s)=0 B (5)=0
A(s)=1 B,(s)=0

o k=12, (3.30)

where, k is the order of the reduced order model. It was suggested that the method is
applicable to MIMO systefns provided that it is modified.
A simplified form of Routh method used in [18] and [19]. In this method the

reduced order transfer function was determined directly from elements of the high-order
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denominator and numerator Routh stability arrays. The method is computationalty simpler
than the standard Routh method and it improves the frequency response of the reduced
order models.

For systems which have imaginary roots or natural integrators in their dynamics
the standard Routh method can not be apply. The Routh-Hurwitz criterion is suitable for |
such conditions which is one of the modified forms of Routh method [20]. In this method,
a zero element of the alpha table was replaced by a small number & and the Routh table
completed in terms of .

In comparison with Routh method the reduced order MCS control will not give
large time-response €rrors so fong as the adaptive weights are big enough to reduce the
steady-state error to zero. If the adaptive weights are too big then, they may excite the
high order unmodelled dynamics of the plant which may then cause instability. Similarly, if
the adaptive weights are very small then the plant response will be slow down and this may
lead large steady-state error. Additionally, the reduced order MCS control uses the poles
and zeros of the system which are closest to the imaginary axis automatically therefo.re

there is no need to compute the roots of the higher order plant model.

3.6.1 - New Optimal Routh Method

The reduced order models produced by Routh method does not fit the time
response of the original system therefore, they may give large time response €rrors. To
overcome this problem while preserving the stability of the reduced order model, a new
optimal Routh approximation method was proposed which combined Routh approxxmation
method with an integral square error (ISE) method in [2t]. In this method, the
denominator of the reduced order transfer function was formulated by using the standard
Routh method and the numerator was determined by minimising a time response integral
square error (ISE) criterion. The method is applicable to both continuous and discrete time
SISO systems. Although, the technique has simple formulation procedure the construction
of a set of linear equation is rather time consuming.

In comparison with new optimal Routh method the reduced order MCS control 1s

very simple due to the fact that it does not use plant parameter for implementation.

62



g ST

3.6.2 - Routh-Approximant Time Domain Model Reduction

Routh approximant time domain modelling is another modified form of Routh
approximation method which produces reduced order models via a -8 expansion [22]
similar to the o~ expansion of Hutton and Friedland [18]. The lower order time domain
model matrices were derived from the original system dynamics parameters by a suitable
truncation procedure. The method is a time domain model reduction technique based on
the frequency domain Routh approximant procedure and it is applicable for both SISO and
MIMO systems.

3.7 - PADE" METHOD

Pade’ approximation technique or equivalently continued fraction methods has
many usefil features and it is easy to conduct. However, it may produce an unstable
reduced order model, although the original plant is stable. In order to overcome this
problem Pade” method was used together with some additional approaches which were
preserved the reduced order model stability. Firstly, Pade” method was used together with
Routh stability criteria in order to construct Hurwitz polynomials for the reduced order
model. The second method was the generalised Pade” approximation technique which
retained specified dominant roots of the higher order original system in the reduced order
model. Another approach proposed'by Appiah in {23] in this method, the denominator of
the reduced order transfer function was derived using the original Hurwitz characteristic
polynomial and the numerator was obtained using Pade” approximation. Let the Pade’
approximant be defined by

E(s)

0,09

where P, (s) and Q, (5) are polynomials of the original plant transfer function. After model

n-1
d,+d s+-+d,_ s
H
e, +e5++e,s

=G, - 631

order reduction procedure, let us denote a reduced order model R(s), of order £, is

required, and let it be of the form

R(s) =

k-1
a, +a,st-+a, s

k
by + b5+ +b,s

(3.32)
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In general, the coefficient of the numerator is given as follows
a, = bty
a, = bye, +b¢,
(3.33)

a,., = by, +bc,, +--+b, 0, +b,C4

0=byCppr THCH 3+ +b, \C, +5,Cy

3.7.1 - Pade” Approximant with Time Moments Method

In this method Pade approximation was used together with time moments
method in order to derive a reduced order model which has the same initial time moments
as the original plant [24]. The method retained the dominant poles, or any other desired
poles of the system into the reduced model by using Koenig’s theorem in [25]. The
reduced order models generated from this method showed the significant characteristics of
the original system by fitting the initial time moments of it. |

In comparison with this method the reduced order MCS control is easy to apply
and it produces stable and accurate reduced order models which have the initial time
moments that is very close to the original plant without necessity of knowing the reduced

order plant parameters.

1.7.2 - Pade’ Methods of Hurwitz Polynomial Approximation

Time moments and Markov parameters approaches were used to construct low-
degree Hurwitz polynomial from the higher order original system in [17]. Using the
Hurwitz polynoﬁﬁal, the numerator. dynamics of the reduce& order transfer function
models were determined by partial Pade’ approximation of a given higher order model. It

was claimed that reduced order modeis generated from this method are always stable.
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3.7.3 - Routh- Pade’ Approximation

In this method, the denominator of the reduced order model was derived by using
Routh stability criterion while the numerator was computed from Pade” method in order to
fit the initial time moments of the original plant [26]. It was demonstrated that the method

can preserve the stability of the reduced order models.

3.7.4 - Stable Partial Pade” Approximation

In stable partial Pade’'method, the numerator of the reduced order model was
obtained by using standard root locus plots [27]. It was shown that the reduced order
model matched the original plant in the Taylor series accurately. The method improved the

stability of Pade” approach.

3.7.5 - The Constrained Suboptimal Pade” Method

The suboptimal Pade’ method is based on the multipoint Pade” approximation
method [28]. It was shown that the method is not complex but it requires great deal of
computation.

Constrained suboptimal Pade” model reduction is an another type of Pade’
method which was developed as an extension to the suboptimal Pade” method in [29]. The
method uses the Lagrange multipliers theory in order to produce reduced order models
which matches the original plant in the initial time response.

Pade” approximation technique was used in the case of MIMO systems model
reduction in {30]. The multivariable reduced order model was derived from the partial
realisations of the system in state-space form. The method needs a great deal of numerical

computation therefore, it is time consuming.
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3.8 - REDUCTION OF TRANSFER FUNCTIONS BY THE STABILITY-
EQUATION METHOD

The stablhty-equatlon model rcductlon method was performcd by ignoring the
largest poles and zeros of the nominal plant transfer function. It was observed that poles
and zeros with smaller magnitudes are more dominant therefore, they should retained in
the reduced order model [31]. Let a higher order system transfer function be given by
b s"+b, s +o4bs+d, N (s)

as" +a, s +tas+a,  D(s)

n n

G(s) = (3.34)

- where n = m and N(s) and D(s) are the numerator and the denominator of G(s),

~ respectively. The above equation can be written as

N,(5)+ N, (s)

Gls) = D,(s)+ D,{s)

(3.35)

where

N,(s)= ib,.s"

=02, (3 . 36)

N, (s)= ym‘_‘bis"

i=13,...
and

D,(s)= iais"

i=0,2.... (3 ‘37)

D,(s) = Zn:a,.s‘

i=1.3....

Later, Equations (3.36) and (3.37) were factored as

N,(s)= ﬁ(f +z,.2)
=l (3.38)

N (s)= s]::;[(s2 +z,.2)

and

= (3.39)
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m=m/l2 if m is even,
=(m-1)/2 m is odd;
n=nl2 if n1s even,
=(n-1)/2 if n is odd;
and
PPy (P
22 (2223 ¢+
The coefficients of the reduced stability equations were multiplied by the magnitudes of the
selected poles and zeros. Hence, the reduced order model matched the original plant in

steady-state response [34]. Following, the reduced stability equations of G(s) were written

as

m'=]

Ne’ (s)= z;‘:I-I(s2 +z,.2)

o (3.40)
N, (=2 [ +P})
i=1
The reduced order model was
N'(s)
G = , 3.41
n-1 D,(S) ( )
where
N{(s)=N,+N, if m is even
N'(s)=N, +N,  ifmisodd
and
D'(s) =D, + D; if n is even
D'(s)=D, +D, if nis odd
Then, the reduced models of the polynomials N(s) and D(s) were constructed and finally

the reduced model of G(s) was obtained. -
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3.9 - DOMINANT MODE MODEL REDUCTION METHOD

Davison’s [32] and Marshall [33] methods are both dominant mode model
reduction methods which retain the dominant roots of the original transfer function of the
system in the reduced order models. Tt was shown that the reduced order models produced
by these methods are stable provided that original plants are stable. However, these
methods did not produced accurate reduced order models especially when the eigenvalues
of the original higher order systems ar¢ widely separated. The computation of the
eigenvalues of the original system can be a problem if the order is very high. In order to
overcome this difficulty some other approaches were used to retain the most dominant part
of the original system in the reduced order models without computing the eigenvectors and
eigenvalues of the nominal plant mode! [34].

A multivariable system was composed of a number of slow and fast subsystems
then the slow subsystems were used to form a reduced order model by using dominant
mode model reduction method in [35]. It was pointed out that slow dynamics of the system
are near the origin therefore they are dominant and will produce stable lower order
models.

Similarly, Marshall’s method retains only the dominant eigenvalues of the original
plant in reduced order models [36]. In this work, after model reduction process by using
the proposed method the difference between the higher order system and the reduced
order model was evaluated by ISE criterion. It was shown that the method may produce a
good reduced order model provided that most suitable eigenvalues are chosen.

In the case of the reduced order MCS control, there is no need to select the
dominant eigenvalues and eigenvectors of the original plant since the reduced order MCS
algorithm is activating the most dominant part itself. This is obviously an advantage due to
the fact that it may be a problem to choose the suitable eigenvalues for the reduced order

models if the eigenvalues of the original plant is widely separated.
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3.10 - AGGREGATION METHOD

Aggregation mgthod is also based on the dominant modes of the original system
:n a similar manner to the previous method. In this method the states of the original plant
state vector was divided into parts to bring out the most significant dynamics of the
system. This is usually time consuming process and needs a great deal of numerical
computation. A simplified form of the method was used in [37] by using an equation which
satisfies the optimal aggregation matrix.

Aggregation method applied to a higher order system by using Markov
parameters in [38]. Markov parameters were used to form the aggregation matrix to match
the time moments of the nominal and reduced order model of the system in order to
produce accurate models.

The method have some disadvantages such as, the computation of the
aggregation matrix can be complicated and if the chosen eigenvalues are not truly

dominant then, the reduced order model may give large steady-state efror.

3.11 - BALANCED MODEL REDUCTION METHOD

Balancing model reduction method uses the most controllable and observable part
of the nominal plant model to produce reduced order models [39]. The method is based on
the balanced state-space representation of the original plant and it is applicable to both
continuous and discrete time system. It was shown in [40] there exists co-ordinate systems
in which grammians were equal and diagonal. We are given a linear time invariant
continuous system in the state-space form

x = Ax+ Bu (3.42)

y=Cx T

where A is nxn, B is nxr and C is mxn. The controllability and observability grammians are

T

W, = je’“BBTe"'dr (3.43)

¢
0
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W o= _[e"‘r‘CTCeA’dt (3.44)

o
0

are both non-singular for any 7 > 0. If the system is internally balanced then, (3.43) and
(3.44) can be written as follows

w(P)=W;(P)=2° (3.45)
where, the matrix P is the similarity transformation and the matrix 37 is diagonal and the

diagonal positive elements were called the singular values of the system.

£? = diag(o} o3, - ,07) | (3.46)

n

The internally balanced system was partitioned as

(- )G
X, Ay Ap/i\x, B,

(3.47)
X
v=c of)
where 4,, is kxk and the matrices 4, and 4, are square It was shown in {39] that
. 2
_|'||u2 | 4 2
0 > ak llx2 (1:)“ (348)

T

X, (T)“2

T 2 -
I "u:" dt
0

If o, )0o,,, then ||x2 (r)n((”x, (r)" suggesting that the part x, is much less affected by the

input than the part x;.

[ 0} = b= ) (3.49)
Equation (3.49) indicated that the x, part of the state affects the output much less than the
x, part. Therefore, the system (4., By, C,) may be a good reduced order model of the
system (3.42). If the system (3.42} is balanced, then every subsystem is asymptotically
stable and the diagonal grammian matrix W satisfies the Lyapunov equations

WAT + AW = —BB’

WA+ ATW = ~CCT

The two subsystems (4, B, C) in (3.47) are also balanced and the grammians are given as

(3.50)

below
W;A: + Air'PVi = _BiBiT

WA + AW =-CIC, (i - 1’2) (3.51)
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For the balanced system the cross-grammian matrix, W.(P) is given by
Wt =WW?
w2 (P2 = Wal(P)

The cross-grammian matrix W., contains information about both controllability and

(3.52)

observability grammians matrices [41]. Balancing method was used in the case of the LQG
(Linear Quadratic Gaussian) design problem in [42). As it was pointed out in [43] that
Moore’s truncated balanced realisation is not close to the optimal reduced order model.
The balancing method was used to generate reduced order models in the case of a unstable
plant in [44]. Balancing method was used together with the singular perturbation model
reduction approach in [45] which gave a new unified technique that combined advantages
of both methods. |

Balancing and aggregation model reduction methods were compared in [46]. Tt
was pointed out that although, in many cases the eigenvalues retained in aggregation
method were dominant still there were conditions in which the choice of the retained
eigenvalues were not truly dominant therefore, balancing method is more reliable.

A stochastic balancing model reduction method was introduced by Desai in [47].
The method guaranteed the asymptotic stability of the reduced order models. Pernebo and
Gilyerman proposed a new method for stochastic balancing in [48]. Later, this method was
used to prove the stochastic reduced order model is stable, dissipative, minimal and
positive real in [49].

The standard balancing method is not applicable systems which have natural
integrators in their dynamics due to the fact that for such system grammians do not exist.
However, if the system is controllable and observable then, antigrammians do exist. The
antigrammians of the original system were used for the balancing and model order
reduction in [50)].

In comparison with balancing method using the reduced order MCS control has
many advantages. Firstly, a great deal of numerical computation will be avoided due to the
fact that the reduced order MCS controt does not need the nominal plant parameters.
Secondly, it will guarantee to get the most controllable and observable part as a reduced

order model automatically due to the fact that the reduced order MCS control activates the
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dominant part of the original plant. The reduced order MCS control can also be used in the
case of unstable systems and systems with integrator. Usmg the reduced order MCS
control in the case of systems with integrators has advantages compared with balancing
method. The reduced order MCS control does not need to compute the antigammians to
find out most controllable and observable part of the plant, therefore it is very straight
forward and still it will guarantee the stability of the reduced order model. Additionally,
the reduced order MCS will preserve the integrator in the reduced order plant dynamics
therefore, it is computationally simple and practical implementation is very easy. The
reduced order MCS control can be implemented in such way that it will guarantee the
hyperstability of the reduced order models. The reduced order plant parameters will give a
solution to Lyapunov equation. The implementation of the control is simple and does not

need the reduced order model parameters of the system.

3.11.1 - A Fractional Approach to Model Reduction Method

A fractional model reduction method was used to balance and truncate an
unstable system in [51]. The method produced stable reduced order models without
dividing the nominal plant model into stable and unstable parts. The reduced order models
generated by this method were minimal in terms of controllabilty and observabilty. The
method preserved the reduced order models stability and retained the dominant part of the

original system.

3.12 - IMPULSE ENERGY APPROXIMATION FOR MODEL
REDUCTION

It was suggested that if the impulse response energies of the reduced order
models and the original plant are close then, the reduced order model will be a good
approximation of the real system [52]. Impulse energy method is based on selection of
alpha and beta parameters in a similar manner to Routh method and it satisfies the impulse
response energy criterion better than the ordinary Routh method. It was claimed by Lucas

that the reduced order model derived by using impulse energy method is better than Routh
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method [53], this is not true in general, it was shown that even though the impulse
response energy of the reduced order model was very close agreement with the original
plant still the lower order model was not good approximation of the full order system in
[54]. However, if the reduced order model is a good approximation of the nominal plant
model than it will give impulse response which is close to the real system impulse response

as a natural consequence.

3.13 - SINGULAR VALUE DECOMPOSITION

A singular value decomposition model reduction method was formed by using a
Hankel matrix which was generated from a set of Markov parameters in [55]. The Markov
parameter sequence has a property of driving the steady-state error of the reduced order
models to zero. The reduced order models produced by this method were stable and
internally balanced. However, the method has some disadvantages such as numerical
complexity. In comparison with this method the reduced order MCS control has minimum

numerical computation and it guarantees the global stability of the reduced order model.

3.14 - OPTIMUM SOLUTION OF MODEL REDUCTION PROBLEM

An optimal model reduction method was used to generate a reduced order model
in the case of an unstable plant in [44]. The method retained the unstable part of the plant
without any changes therefore, only the stable part of the original plant is reduced. The
method used an explicit solution of the Lyapunov in a Newton-Raphson algorithm.
Accurate reduced order models were generated due to minimization of the integral-square
difference between the impulse responses of the original and reduced order models.

The optimal steady-state reduced order estimator was described by one modified
Riccati equation and two modified Lyapunov equations in [56]. The method generated
accurate reduced order models. However, there were fixed order dynamic compensation

problems which required iterative algorithms.
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Although, these methods produced accurate reduced order models, they are
analytically complex and numerical computation is time consuming. In comparison with
the reduced MCS contro! algorithm the optimal model reduction methods require very

accurate linear model of the original plant. For that reason the parameter uncertainties and

nonlinearities in the plant can prevent obtaining accurate reduced order model in the case

of the optimal model reductioh methods which is obviously not a problem for the reduced

order MCS control.

13.15 - FREQUENCY DOMAIN MODEL REDUCTION METHODS

Frequency domain model reduction methods are capable of deriving accurate
reduced order models due to the fact that they can retain the dominant mid-frequency
dynamics in the reduced order model. For that reason, these methods were used together
with other approaches to improve the accuracy of the reduced order models, e.g., in [57],
the denominator of the reduced order model was calculated -by using the power

decomposition method while the numerator was derived from the frequency response

matching technique.

3.15.1 - Frequency Fitting (F-F) Pade” Method

For the sake of generating an accurate reduced order model the high frequency

dynamics of the system should retained in the model as well as the low frequency

dynamics. Lower order models generated by the standard Pade” technique gives accurate

ange, but they may get unstable when the plant is working

.responses at the low frequency
in mid-frequency range. To overcome this problem Pade” method was used together with
the frequency-fitting method which are capable of matching the original plant at dominant
mid-frequency range in [58]. The dominant part of the plant dynamics were retained in
reduced order model by using the frequency fitting method while the lower frequency

characteristic was retained by the Pade’ approximation method. It was suggested that
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when the accurate fitting is achieved in the mid-frequency range, the stability problem will

be solve as a natural consequence.

Frequency fitting method gives more accurate reduced order model than the

al model reduction methods (Routh method, Pade’ method, Routh-Pade” method,

classic
that it reflects the

Routh-Hurwitz and dominant eigenvalues method} due to the fact

* characteristic of the original system in the dominant-mid frequency range more accurately.

For this reason, it guarantees the stability of the reduced order models.

3.16 - APPLICATION OF CONVENTIONAL MODEL REDUCTION
METHODS ON THE ELECTROHDRAULIC ACTUATOR PLANT

The nominal transfer function of the electrohydraulic actuator plant was found

from system identification tests as follows:

2830 '
G = ’
-pa(s) S(S+3_3+16j)(s+8.8—16j) 7

e found by conventional model reduction

The reduced second order models which ar

methods are given in Table 3.3 and 3 4. The step and impulse responses of the nominal

transfer function of the electrohydraulic actuator plant together with its reduced order

models are given in Fig. 3.3 and 3 .4 respectively.

Electro- Routh-Hurwitz Routh Impulse Pade’ Methods
hydraulic Method Stability of | Energy of Hurwitz
Actuator Pade” Method Polynomial
Plant Method Method
Second

Order . ___ 33344 s o 33344 _ 16079
Model Ge. ()= w1757 3wa] O = s Grl)= Firgsrana | O ()= 7 19ss

Table 3.3: Reduced orde:r models of the electrohydraulic actuator plant
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Electro- | Stability Pade’ Balancing | Dominant Dominant

hydraulic | Equation Method with | Method Mode Model | Eigenvalue

Actuator | Method Dominant Reduction and

Plant Mode Method Frequency
Reduction Matching

Method

Second

Order 3o 1798 .28 AT __B __1,

Model Gp(s) = s +123s Gpa () st +14s Gr(s) s* +88s Gp(s) s +88s Gp: () st +12s

Table 3.4: The reduced order models of the electrohydraulic actuator plant

Discussions:

The Routh-Hurwitz and impulse energy methods are produced the same reduced
second order model. This is mainly due fo 2 free integrator inside of the plant dynamics
which is treated similarly by both methods. As it is mentioned in section 3.6 and section
3.12 although these two methods based on Routh stability arrays they are different than
each other. Similarly, the balancing and dominant mode model reduction methods gave the
same reduced order model indicating that the selected eigenvalues of the original plant in
the case of dominant mode model reduction method are truly dominant due to the fact that
the balancing method retains the most controllable and observable part of the original piant

in the reduced order model.
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Fig. 3.1: Step responses of the electrohydraulic actuator plant and its lower order models
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Fig 3.2: Impuise responses of the electrohydraulic actuator plant and its lower order
models

alpha table has a zero in its first column. In normal condition, Routh method can not be

applied. In order to overcome this problem, Routh method is used together with Hurwitz
criterion to produce an approximation. The zero element of the left column entry is
replaced by a small number & and the Routh table is completed in terms of &£ Another
« difficulty is encountered that was the numerator of the transfer function a constant. Later,
this constant number is treated as the first element of the beta table.

In the case of balancing method, the order of the plant is reduced by using
antigrammians of the plant instead of grammians. This is again due to a free integrator in
the plant transfer function. As it is mentioned in section 3.10.3, for plants which have free
integrators in their dynamics grammians do not exist but antigrammians do.

The first group which includes balancing method, Pade” method of Hurwitz
polynomial method and dominant mode model reduction method produced second order
models with a free integrator in them. The model responses are very close agreement with
lhe original plant output in both step responses and impulse energy responses as it is

shown in Fig. 3.1 and 3.2.
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Dominant eigenvalue and frequency matching method, Routh stability of Pade’
method and stability equation method produced reasonably accurate reduced order
models. Although, the responses are reasonably good still they are not as good as the first

group of model reduction methods responses.

The third group, including: impulse energy response method, Routh method and
Pade” method with dominant method did not produced good models. It can be seen in both

step responses and impulse responses diagram in Fig. 3.1 and 3.2.

1.47 - REDUCING THE ORDER OF THE ESH PLANT BY *
CONVENTIONAL MODEL REDUCTION METHODS

The second order transfer function of the ESH materials testing machine is found

by a system identification tests under load control, which is given below

2900
G, = 3.54
72 (5 +87.01)(s +22.98) @.59)

The reduced first order models that are found by conventional model reduction methods
are given in Table 3.5 and 3.6. The step and impulse responses of the nominal transfer
function of the servohydraulic ESH materials testing machine and its reduced order models

are given in Fig. 3.3 and 3.4 respectively.

ESH Routh Routh Balancing Pade’
Materials | Method Stability of Method Methods
Testing Pade’ of Hurwitz
Machine Method Polynomial
Method
First
Order 1595 iy 2636 _ 2035 _ 1595
Model 6n() =0 | PO =Tss | BT sraT %P = o

Table 3.5: The lower order models of the ESH materials testing machine
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ESH Stability Pade’ Impulse Dominant | Dominant

Materials | Equation Method with | Energy Mode Eigenvalue

Testing Method Dominant Method Model and

Machine Mode Reduction | Frequency
Reduction Method Matching

Method

First

Ord 2636 3o 3232 FORmIL 3o 4529 332321

Mroggl Gl =Triars| P =7z2m | PV =T Gl = o508| P Tizase

o
Er

Table 3.6: The lower order models of the ESH materials testing machine

Discussions:

Routh stability of Pade’method and stability equation methods are given the same
reduced order model. Both methods are based on neglecting roots of the original plant
model which have larger magmtudes Pade’ method with dominant model reduction and
dominant eigenvalue and frequency matching method are produced the same reduced first
order model. In both m_ethod the denominator of the reduced order model is formed by
choosing the dominant eigenvalues of the nominal plant modet therefore, the denominator
is obtained was the same. Subsequently, the denominator polynomials are used to form the
numerator dynamics in both cases which lead the same constant rumber as a numerator.
Routh and Pade’ methods of Hurwitz polynomial methods also generated the same
reduced order models despite the fact that these two methods are considerable different

than each other in terms model reduction procedure.
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Fig. 3.3: Step responses of the ESH plant and its lower order models
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Fig. 3.4: Impulse responses of the ESH machine and its lower order models

In the case of the ESH materials testing machine, Routh stability of Pade” method, stability
equation mefhod, dominant eigenvalue and frequency method and Pade” method -with
dominant mode reduction method are produced step and impulse responses which are very
closely following the nominal plant transfer function response of the system as shown in
Fig 3.3 and 3 4.

Pade” methods of Hurwitz polynomial method and Routh method produced
acceptable responses. Balancing method, dominant mode model reduction method and

impulse energy method did not produce very accurate models as shown in Fig 3.3 and 3 .4.

3.18 - CONCLUSIONS

In this chapter model reduction methods are introduced in the case of both SISO
and MIMO plants. In the first section of the chapter adaptive madel reduction methods are
presented. The first method was averaging method. Although the method was shown to be
effective for model reduction, it is rather difficult to derive the error equation if the relative

degree of the plant is higher than one. The second method was EMCS control. This is a
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control strategy extension to the standard MCS control and it is a good option in the case

of plants which are subjected to rapidly varying disturbances. The reduced order MCS

describe as the standard MCS algorithm in which the controlled plant
amics which is treated as the part of the

‘control can be
contains high frequency unmodelled dyn
disturbances term acting on the system. It is assumed that these unmodelled dynamics may
fead to rapid variations in the disturbances term unless there is some limitations set on the

eference model and input signal. Hence, using the reduced order EMCS control in the

‘case can be an another option. The stability of the reduced order MCS control (MCS with

“unmodelled dynamics) will be investigated in chapter 4.
In the second part of this chapter, fifteen different conventional model reduction

‘methods are presented. Subsequently, some of these model reduction methods are used to

_reduce the order of both the ESH materials testing machine and electrohydraulic actuator

plant. Finally, the performance of conventional model reduction methods were compared

with the original plant transfer function using step and impulse response in Figs. 3.1-3.4.
Classical model reduction methods are based on mathematical approximation such
as Pade’ approximation, the continued fraction method and the time-moment matching
: method. Although, these methods are useful in many practical applications they have some
“disadvantages such as, the reduced order models obtained by those methods may be
unstable aithough the original system is stable and they may not Be écﬁurate in the mid and
high-frequency range.

Some of the conventional model reduction methods gave very close results to the
real plant transfer function of the ESH materials testing machine, e.g., dominant eigenvalue
and frequency matching method, balancing method, Routh stability of Pade’ method,
stability equation method, Pade” method with dominant mode reduction, shown in Fig. 3.3
~and 3.4,
' Routh’s method and impulse energy method did not give a good approximation in
the case of the electrohydraulic actuator piant, due to the fact that the plant contains a free
integrator, therefore it is rather difficult to arrange the alpha as well as beta table. The
models produced by dominant mode model reduction method, Pade’ method of Hurwitz
polynomial and balancing method produced very accurate second order models with a free

integrators inside of them. As it is shown in Fig. 3.1 and 3.2 step and impulse responses

those models responses are very close agreement with the nominal plant model response.
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It has been observed that the frequency domain model reduction methods and
balancing methods produced very accurate reduced order models which are close
. agreement with the original plant responses. This is due to the fact that these methods are
capable of retaining the most dominant part of the original higher order system.

It can be concluded that, conventional mode! reduction techniques may be used in
the case of reduced order MCS control. In this case, it is useful to find the reduced order
. transfer function of the system to figure out the settling time and sampling interval of the

MCS control. In addition, the reduced order plant parameters are required in the case of
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CHAPTER 4

THE STABILITY ANALYSIS OF

THE REDUCED ORDER MCS CONTROL

4.1 - INTRODUCTION

In this chapter the stability of the reduced order SISO and MIMO MCS control
system will be proven by using Popov’s and the Lyapunov equation method. Normally, the
dominant frequencies are in the range .’of the slow part of the plant which can be matched
by the reduced order model. In the case of the reduced order MCS control, the reference
model which has lower order than the nominal plant model has been used and the modelled
part of the plant matched the reference model in order to represent the slow dynamics of
the plant. Hence, the fast dynamics of the plant are unmodelled, and included int(.) the
disturbance term in the state-space representation of the plant.

The stability of the reduced order MCS to unmodelled plant dynamics is proven
by both the Popov’s hyperstability theory or the Lyapunov function depending on the
nature of the disturbances. If the disturbances and the plant parameters are slowly varying,
then Popov’s hyperstability theory is used to prove the stability of the system. If the
disturbances are rapidly varying then the Lyapunov function is needed to prove the
stability of the system. ‘

The stability analysis of the reduced second order electrohydraulic actuator plant
is proven by the Popov’s hyperstability theory and the Lyapunov function. In the normal

operation case, the nominal plant transfer function is of third order, including a free
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integrator. In the case of MCS, the plant is represented by a second order transfer function
(including a free integrator) together with a disturbance term, in a state-space form.

In a similar manner, the stability of the ESH servohydraulic material testing
machine is analysed by both methods. Under the MCS control the plant is described by a
first order transfer function together with a disturbance term in state-space form. It is
shown that MCS guarantees stability of systems with unmodelled dynamics. Reduced
order MCS controllers is used very effectively in the case of the higher order plants due to
simplified dynamics of them. The stability of the reduced order MCS control will be
proven in the case of both SISO and MIMO systems in this chapter.

4.2 - THE REDUCED ORDER ADAPTIVE CONTROL

Adaptive control has been researched for a number of decades. In recent years,
the algorithm has been applied to variety of systems. The frequency content and magnitude
of the reference input signal, adaptive gains and initial conditions have crucial effects on
the stability of the adaptive controls. ' _

Reduced order adaptive control is described as an standard adaptive control
together with unmodelled dynamics. Many efforts have been made to formulate and
analyse reduced order adaptive control schemes. In [1] the stability was proven for a
reduced order indirect adaptive regulator. The efforts of reduced order direct adaptive
control were studied in [2], [3] and [4]. '

In order to prove the stability of adaptive control it is convenient to assume that
the controlled plant is lower order. The dominant frequencies are slow and are in the mid
frequency range of the plant which can be matched by the reduced order model. The
unmodelled dynamics effect the cdlosed loop system dynamics different in adaptive control
than the conventional controller due to the fact that the plant input which is generated by
adaptive feedback incorporates the unknown plant with the unmodelled fast dynamics.

If the input signal has more action in the high frequency range the adaptive
control may become unstable due to excitement in the unmodelled part of the system. This
simple but fundamental observation has led us to the restriction of the inputs to the class of

persistently exciting inputs which has more action in the mid frequency range. High
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 frequéncies in the input signal can excite high order unmodelled parts of the system and

_ hence can lead to instability.

In the case of MIMO systems each local controller faces the uncertainty of
* unmodelled interactions with other subsystems as well as the unmodelled dynamics in its
own subsystems. When high order unmodelled dynamics are present, all signals converge
to a stability set that size depends on controller parameters, the magnitude of disturbances,

and the reference input signal.

4.3 - PERSISTENTLY EXCITING INPUTS

The adaptive control is considered to be stable provided that the input signal is
persistently exciting, which means it has more action in the mid frequency range but does
not contain high frequencies in the unmodelled part of the plant.

The requirement for asymptotic stability is that the input signal #(#) be sufficient

enough to persistently excite all the modes of the plant, as shown in [5], [6] and [7}. The
main aim is to consider only the dominant and to neglect the higher order dynamics of the
system. Hence, input signal will only activate the dominant part of the system. An example

of a persistently exciting input signal is
K ' : ‘
u(t) =y a,sinw 4.1)
i=l .

where @, are all distinct and positive and g, 0. High frequencies can be avoided since

they excite the unmodelled higher order dynamics. It was illustrated in [6] that in the
presence of high order unmodelled dynamics, high input frequencies may destroy the

persistently excitation of the input signal.

4.4 - THE REDUCED ORDER MCS CONTROL

It is usually an advantage to obtain a reduced order controller by neglecting the

high order dynamics of the plant. Using lower order model may produce more accurate
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results due to the fact that in many cases the generated model of the higher order plant

may be over parameterised.

The reduced order MCS control is standard MCS control in which the reference
model is lower order than the controlled plant therefore the controller contains high order
unmodelled dynamics which are included into the disturbance terms. The stability of the
reduced order MCS control will be proven in this section, first by Popov’s hyperstability
theory in the case of small varations, then by Lyapunov function in the case of rapid
variation in plant parameters and disturbance terms. If the plant is subjected to rapidly
varying external disturbances and p]ant parameters, then ‘the boundedness of different

signals of the plant-reference model is guaranteed.

4.6 - STABILITY ANALYSES OF THE REDUCED ORDER MCS
CONTROL BY POPQV’S HYPERSTABILITY THEORY

4.5.1 - The Reduced Order SISO MCS Algorithm

The reduced order SISO MCS algorithm is an standard SISO MCS control in
which the controlled plant contains some high frequency unmodelled dynamics and these
unmodelled dynamics are included into the disturbance term. Consider a linear, nominal

plant model described by the following state-space equation
% = Ax(f) + Bu(?) (4.2)
where A(f) € R™ and B(f) € R™ and x = [x, L Xy, s x,,]T x € R™ . The

variables x(7) and u(7) denote the plant state vector and the control input respectively,

where
‘o 1 0 0 .. 0] 0] (o]
0 1 o ... O 0
A=} - : : .. ., B(n=| |= ' 4.3)
o o 0 0 .. 1 S
LFG, —a, —a; —a, .. T4,] Lbl J Ll_
The reduced order plant model together with unmodelled dynamics may be wriiten as
%, = Ax,(1)+ B u(f)+ d(x,, 1) 4.4)
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where

[ 1 0 0 0 ] 0] _Oh
0 0 0
Ar(f)= . ) ) ) ) . ,Br(;)= =1 (4.5)
0o 0 0 O 1 -
—a, —a, —a; —d, —a, | (&) L1
and
0
0
d(x,.1)=| . (4.6)
dl

The unmodelled dynamics are included into the disturbances term d(x.,f). The reduced

- order model has a transfer function of A’th order. Hence, the order of the reduced order

plant model is #n-h degrees lower than the original plant model. It has been observed that
the plant states are available and the order of the plant is known. Moreover, the
coefficients a; (i=1,2,...,4), d, are unknown and assumed to be bounded and time varying.
The reference model is defined by the following state-space equation.

%, (1) = 4,x,(0)+ Bor() @7

where 4, € R™ and B,, € R™. The matrix 4,, and the vector B,, are given by

[0 1 0 0 .. 0] 0]
0 0 1 0 0
A =1 - . . .. . |,B, ={" (4.8)
o o o o .. 1
_—aml _am2 _amS ﬂam4 _amh | me -
The error dynamics of the closed-loop system given by Equations (4.4) to (4.7) are
£,(0)= A5, (1)~ (4, - A,)x,(0) - Balt) + Br(e) - d(x..0) @9) .
where
x,(O)=x()-x() (4.10)

According to Stoten and Benchoubane [8], the disturbance term,la’(x,,.t) due to unmodelied

dynamics is bounded and it can be written as below.
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d(x,,1} =084 (t)r (4.11)

0

. where 84, (1) = 0 and &, (r) € R™ and r is the reference input r(¢}= 0, for all ¢.
6, ()

Normally, the reference signal is a slowly varying therefore, the nature of the disturbance

d(x,,!) is depend on the variations of &zr(t). By partitioning the matrices 4,, A, and the

vectors B,, B,, and d(x,f) into

(4.12)
0 0 0
Br — h-1,1 , Bm — h-11 and d(xr,t) - h-11
b b d,

An.= (1xh)vector, 4,, =[-a, -a, .., -a,]

Am = (1xh)vector, 4, = [—am, —-a,, .., —~am,,]

and

where 84,(¢) term is the unknown variation and unmodelled dynamics in the 4, matrix in
4.11). Then, (4.4) can be rewﬁtten as:
%, () = (4, +84,(0))x, () + B.u(r) (4.13)
. The changes in 4,, and B, due to the parameter variations and unmodelled dynamics are

_ denoted by &4,(r) and JB, (r) respectively, then (4.13) becomes:
, %, (1) = (4, +84,(0)x, (1) +(B, + B, (@)u(r) (4.14)
. where &4, (1) = 84, (£) + 84, (¢).

The control signal in the case of MRAC is given as

u(t) = (=K + SK(O)x, () + Kz + Ko )r(?) “15)
I= In the case of MCS (4.15) is determined by using K =0, and Kx =0,
u(f) = 8K{)x, (1) + 8K (£)r(?) (4.16)

- where K and Ky the linear model reference controller gains. Then, the closed-loop plant

dynamics can be written from (4.14)= and (4.15)
x,(8) = (4, +84,(0))x,(€) + (B, + B, (1))(6K()x, (2) + 8Kr (1) (1)) (4.17)




which becomes

%,(0)= (4 () +B; (1K (1)), (1) + B; (3K (1) (1) (4.18)

where, 47(f)= 4, +84,(f) and B}(t)= B, +3B,(t).

The error dynamics of the closed-loop system is derived from (4.7) and (4.18) as follows

%,(6) = Ax, (0) +(4.0(0) - B2 (NeK(0))x, () s
(Bl)- B KA )
where
=)0
A,(1) = 4,(1) - 47(0)
B,o(1) = B (1)
Equation (4.19) can be rewritten as

(1) = Ax,(0)+ 1,7(t) (4.20)

where :
w(t) =(4,.()-B; (1)K (0))x, (1) + (B.{1) - B (1)K, 0)40] (4.21)
The feedback system (4.20) was represented by the standard form of two blocks for the
stability analyses see [9] and Appendix 1: A linear time invariant feedforward block, and
nonlinear time varying feedback block as shown in Fig. 4.1.

+
O N wy ] (4wl J N

Zero Demand i

Wo(t) Adaptive Block |,
(Nonlinear)

Fig. 4.1: Error dynamics presented as a nonlinear feedback system

In Fig. 4.1 W(f) = -W?), and the system is hyperstable if:

| - The feedforward transfer function matrix C,[s/ - A, 1, is strictly positive

real (SPR), (4.22)
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2 - The nonlinear feedback path satisfies Popov’s criterion, which is given below:
[y. (. ()ar = _ct, forall £, 21, (4.23)

where ¢ is a constant independent of #. Thus, by using the Kalman-Yacubovitch lemma
which is given in Appendix 2, we obtain

y, = Bl Px, = C.x, (4.24)
where C, is the output error matrix, which is determined from the positive definite solution
of the Lyapunov equation

PA +ALP=-0, Q>0 (4.25)
as

C,=B/P , BT =lo, .. .0 1] (4.26)

Substituting (4.21) into (4.23), we get

b7 (0)(B: (93K () - (O, (O = =<1 . (4278

7 (B ()0Ka0) - B O)(e)de = =<} (4.27h)
where

el + cy = ¢’

From (4.15) and (4.16), the adaptive gains are [10];

5K(1) = jo¢,(f)df 4,0

' (4.28)
8K, (1) = [w,(2)dz + v ()
where,
4,(1)= . (I (7) + :()= Br.(0)x (0)
v (2)= (@) vl =m0 (@.289)
and

a=la, @, L al; A=A B - A4l

y=lya Ya - yali * =5 = - % (4.28b)

Equations (4.27a)‘(4.27b) are satisfied by the following choices of & and 8
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a=[0 ... O a,,]} ' 4.29)
g=[0 .. 0 B '

and f, are both of the same sign as b;, Hence the Popov criterion (4.27a)

where o,

expands to
i h t
Ib:la h Zyehxi {I yehxidt - _ar[!i / (b:lah)}dt 2 —clzl (4-303)
I i=l 0
}ogether with :
(4.30b)

oY h
Ib:lﬂhyezhzxizdt 2 —6122
i=l

Iy

" where b7, is the last and the only non-zero entry of B’(f)and a,, is the last row elements

iof A,4(t) and
2 2 _ a2
c]l + c]2 - c]

‘Following the same pattern (4.27b) is written as below

: ]‘b:,a,,ymr[i y rdr—b, /(b:,ah)]dt > -l (431a)
0

o

fy

[ b B,yiridt 2 —c3, (4.31b)
':'where b, is the last and the only non-zero entry of Bm(t), indicating that inequalities

-_;.,: (4.30b) and (4.31b) are satisfied. In order to satisfy (4.30a) and (4.31a) the following

"integral property is used

]
| kit 2 ~kf *(8) /2 (4.32)
. where k is a constant. Comparison with equation (4.302) gives
(4.33)

i

fi= [yehxn'df"arm‘ /(b:lah) and k = b,
Q

© If the variations in a,, and b, are not significant then differentiating (4.33) with respect

(4.34)

then (4.30a) becomes
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Similarly, comparison with (4.31a) gives
Ja :Iyehrdf—bml(b:iah) (4.36)
0

Again if b, vary less rapidly than the adaptive process, then

fil ZYal (4.37)
Equation (4.31a) can written as
[k 2= (t) 12 | (4.38)

The system will remain stable provided that plant parameter variations slower than the
adaptive process. The inequalities (4.34) and (4.37) can be made arbitrarily close to an
equality. Therefore, inequalities (4.272) and (4.27b) are satisfied, since each term in the
summations satisfies an inequality of the type given in (4.32). Bringing together (4.30a)-
(4.31b) the Popov criterion (4.23) is satisfied, indicating that the reduced order MCS
control guaranteed asymptotic hyperstability of the SISO system. The SISO plant

parameter matrices A(t), B(t) and the plant state matrix x are represented in the reduced
order plant model as 4,(¢), B,(¢) and x, and unmodelled dynamics due to the reduction in

the plant order are included into the disturbance term d(x,,7). In this case, it is assumed

that the disturbances due to the unmodelled dynamics are slowly varying therefore the

Popov’s hyperstability theory is used to prove the stability of the reduced order plant.

4.5.1.1 - Stability Analyses of the ESH Materials Testing
Machine by Popov’s Hyperstability Theory

The second order nominal transfer function may be written in a phase canonical form as:

AR AR

y(r) =[2900 0]{28} +[0]
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The ESH materials testing machine parameters and plant state are represented in the

reduced first order model as A4,,, B,, and x,,. Then, the reduced first order plant model

ts described by the following state space equation:

X, (f) = 4,%,,(8) + B, u(t) +d(x,, 1) (4.40)
where 4, =-a,, B, =b,, then (4.40) becomes
£, () = (~a,)x,, (1) + (B, Yu(t) + d(x,,, 1) (4.41)

where a, and b, are unknown first order plant parameters. The first order reference model
18:

x,(0)=A4,%,(0)+ B r(f)

£, (1) = (47 1,)x, (1) + (47 1,)r(1) (4.42)
According to [11], the bounded disturbance vector is written as:
d(x,,.1) = 84, (1)r (4.43)

where

rz0 forall¢

nlz>

In the case of reduced first order SISO ESH plant

A, ()= 5(a”(t))

d(x,,,t) = da, (Or (4.44)
The plant parameters 4,, and B,, vary due to the unmodelled dynamics and nonlinearities in

the plant. These changes can be denoted by &4,,(r)=da,(r) and &B,(f) = 8b(Y),

respectively, then (4.41) can be written as

%, (1) = (@, +8a(t))x,, (1) + (b, + Sb{))u(?) (4.45)
where &a(f) = 84,,(f) = 84, + 84, = &a,,(t) + 8a,,(f). The MCS control signal is
u(t) = 8K(t)x,, (1) + 6K (£)r(7) (4.46)

I'rom (4.45) and (4.46) the closed-loop plant dynamics can be written as

%0 (1) = (47 (2) + B (K (1))x,,(£) + B (1)K (1) (4.47)
where

A()=a/(t)=a, +&

B (1)=58(t)=b, +3b

T'he error dynamiés of the closed-loop .system are given by

100



£, = 4, x.()+(a,0(0)~ 5 (VKD (1) + (B (1) - &7 ()oK O)r()  (448)
where

%)= %,(0)-%,00); x,=x,-%,

a,,(1) = A1) = 4, ~a; (1)
From (4.48), the error dynamics can be written as

2,() = (-4/1)x,()+ 1, w(?) (4.49)

where,
w(t) = (a,0(1) - B, (VO (@))x,, (1) +{(4 1 2,) - b7 ())OK Q)20
The system is hyperstable if {4,,,], ,C,} is a hyperstable block, i.e.
PA +AlP=-0, 0>0
where P is the symmetric positive definite solution of the Lyapunov equation and @ is

chosen for the first order plant as:

e=[1
so that

C =B'P
where

B =[1]

The required closed Ioop settling time for the ESH machine is 4, = 0.35 s. The reference

model parameters are:

¢ A =4/t =-11402

B =4/1, =11402
C, =1t,/8=00438

and Popov’s criterion is satisfied if

f
[yE(w(ede 2~ 1, =1, (4.50)

f
The Lyapunov equation can be solved to yield a positive-semidefinite matrix C. . It remains

{o satisfy (4.50), which can be rewritten as

]. YE(O)(b: (K (W) = a,0(O)x, (1) = ¢ (4.51a)
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[yn ;3K () - @ 1)) 2 =¢; (4.51b)
where
Writing

v =yl xh=[x], a=[a] and 2=[5]

the Popov criterion (4.51a) expands to
4 '
J‘b:lalyelxlli_[yelx-ldr—arOI /(b:laa)]dt 2 -qj, (4.52a)
[ [}

where b7, is the only entry of 5{¢) and similarly a,,,is the only entry of a,,(t).
Ul
Ibflﬁ:)’flxlzdf 2 —Clzz (4.52b)
t :

and (4.51b) expands to
1, ‘
Ib:lalyenr[jyslrdf -4/ (b:lalts):ldt 2 ¢y (4.532)
o 0

together with

r

|b7Buyoridt 2 —c, (4.53b)

By inspection, inequalities (4.52b) and (4.53b) are satisfied. To confirm that (4.52a) and
(4.53a) are satisfied, we use (4.32) integral property, then from (4.52a) one can assign

t
h= Iyelxldt—ar()] /(b:lal) and k = b,
0
It is assumed that @, and b, vary less rapidly than the transient terms in the adaptive laws

(4.28), f, = y,x,. Therefore, in practice the above approximation can be made arbitrarily

close to an equality. In a same manner, (4.52a) can be rewritten as
‘l
Ildlfl 2 —Idll(to)lz (4-54)
1 .

In a similar manner, (4.53a) becomes

]1;}2 fdt ==k (t,)/2 (4.55)
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where,
1 -
k = b:lala f?. = J.yelrd‘r_'4/(b:la]t:) and f2 Eyelr
0 .

Hence, inequalities (4.51a) and (4.51b) are satisfied since we may now ensure (4.52a) and

(4.53a) satisfy an inequality of the type given in (4.32). Therefore the Popov criterion

(4.50) is also satisfied, as required, together with the strictly positive realness of the

feedforward transfer function matrix, implying that MCS guarantees the asymptotic
hyperstability of a reduced first order SISO ESH materials testing machine.

4.5.1.2 - Stability Proof of the Electrohydraulic Actuator Plant
by Popov's Hyperstability Theory

The nominal linearised model is third order, including a free integrator. The third
order plant transfer function is given in Chapter 5 as:

2830
G {s)= 4.56
‘D( ) s3 +17.65% +33344s (4.56)

The phase canonical form of the nominal plant model is
y@) [0 1 0 x| (0
n()j=l0 90 1 [ x() |+ 0()
i3(f)| [0 -33344 -176 x3{H)] (1

‘ (4.57)

x,(0)
y(r)=[2830 © 0] x, () +[0]
x3(1)

The reduced second order plant model is described by the following state-space equation:

%,(1) = A,2%.(0) + B,,u(t) +d(x,,.1) (4.58)
0 1 [0 .
where 4,, = o —al B, = 15| then the reduced second order plant model including
1 : 1

a free integrator is described by the following phase canonical form
x.:rl (t) 0 1 xr2 (t) 0 -
1 — i d
[j”z (t)} {O ! ]{xﬂ; (f) ! b] u(t) ¥ (xrz ’t) (4 59)
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where a, and b, are unknown reduced second order plant parameters and d{(x,,1)
represents the disturbance due to the unmodelied dynamics, plant nonlinearities and

external disturbances. The bounded disturbance vector can always be written as:
d(x,,,1)= 4, ()r (4.60)
The term &4,(¢) can be considered as an unknown variation and unmodelled dynamics in

the A4,, matrix, structured according to any variation in A, Equation (4.60) can be

rewritten as;

2 st

Then, (4.57) becomes

O b el

54,,() = [g &S (IJ

where &,,(f) = 0, due to a free integrator in the plant, so that

&t (£, (1) = dalt)r (4.62)

Let

which gives

Sa,, (1) = &a(t)r 1 x,,, (1)
For the sake of simplicity it is more suitable to have the first row of &4, (1) zero. For the
cases where d(f)#0,, whilst x, (1)=0,, for some x,=0. Then, (4.58) can be
rewritten in the state-space form as:

%,,(1) = (4,, + 4, (). (1) + B,,u(?) | (4.63)
Consider that parameter changes will occur in {4,,B,}, duetothe unmodelled dynamics
and nonlinearities in the plant. Let these changes be denoted by &4,,(¢) and 3B,(f)

respectively; also let 84,(1) = 04, () + 64,,(1), so that the state equation is now written as

i) = (4, + 84,())x,. (1) + (B, + B, (1))ulr) (4.64)
Thus, we define the MCS control input u as
u(t) = 3K(1)x,, (1) + 6K (1)r(t) (4.65)
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The second order reference model is known exactly as
% +2wi%, X, =0 (4.66)

where, @, is the natural frequency and ¢ is the damping ratio of the system, for critical

damping £ =1 and {, =

H

e e RN

In (4.67) reference model parameters ~a,,; = —w?,-a,=—2w0,and b, = w® are known
for a given settling time. In the case of the electrohydraulic actuator plant 7, = 0.25 s.

Hence, (4.67) can be written for the plant as

b A R PR
Therefore, the closed-loop plant dynamics are given by (4.64) and (4.65)

%,(0) = {4 (1) + B; (B (D) (1) + B (1)K (1) (4.68)
where

A(1)= 4,, +34,(1) and B; (t)= B,, +8B,(1)
From (4.67) and (4.68) the error dynamics of the closed loop system are given by

%, (1) = 4,x,(6) + (4,0()- B} (1)K (). (1)

+(B, - Bl (&K O)r() (6%
where
A(0) = 4, - A1)
From (4.69), let
w(t)=(4,()- B (K (1))x,, () +(B.. — B; (5K, 0)Z0)
then (4.69) can be rewritten as
x,(1)=4,x. + Lw(1) (4.70)

The stability of {4.70) is investigated by the Popov’s hyperstability theory. The system is
hyperstable if {Am,I 2,C¢} is a hyperstable block, i.e.

PA_+AIP=-Q, Q>0 (4.71)

where P is the positive definite solution to the Lyapunov equation and Q) is chosen as:
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C,=BTP

so that

where
B,=[o 1]

“For a given settling time £, = 0.35 s

0 1 0
A = , B, = ) C, =[0.0195
~256 -32 256

- and it remains to satisfy (4.23), which can be rewritten as

lj y! (t)(B,‘ (1)K (1) - 4, (t))x,2 (£)dt = ¢!

]' yI (t)(B,' (1)K (1) - Bm)r(t)dt >—¢l

L

" where

- and
() = iog;,(r)x:; () + (O ()
K, ()= e (S e+ A )

together with

}’er_—"[y.l ye‘l]! xfz‘_‘[xl xz]
a=[0 a,] p=[0 B,]

Equation (4.72a) is further expanded to:

[ A 2 t
J‘b:zazzyezxj['[yax;dr“arozz /b:zaz]dt >~
ty i=1 0

“where b, is the second and the only non-zero entry of B:(?)

4

. 2 2.2 2
Ibrzﬂzyele x,dt = —¢;,
fa
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(4.72b)

(4.73a)

(4.73b)




Similarly (4.72b) is expanded respectively as

o

Ib:l a, yar[j. yordc—b,,/ (b,'za 2)}1‘ >-c}, (4.74a)
0

fo

rI
| b, Byhrdt 2 —c, (4.74b)

where b, is the second and only non-zero entry of B,(/). The above equations (4.73b) and
(4.74b) are satisfied. In order to satisfy (4.73a) and (4.74a) the integral property (4.32) can

be used. Then (4.73a) can be written as
(%, fdt = k(1)1 2 (4.75)
‘where
!
k=bha,,  f,=[yax,dr-a,, /b, and (i=12)
0
Similarly (4.74a) can be written as
f = J.yle - bml /b:?.a?.
0

Again, it has been assumed that, b,, a,y and b, vary less rapidly than, the transient
_ terms in the adaptive laws and parameter variations occur on a longer time scale than the
adaptive process. The Popov criteria (4.74a) and (4.74b) are satisfied. Therefore MCS
ensures asymptotic hyperstability of the reduced second order (including a free integrator)
electrohydraulic actuator plant. |

The nominal plant parameters and plant states appear in the reduced second order

model as 4,, B,, and x, together with unmodelled dynamics which are treated as

disturbances.

4.5.2 - Stability Analyses of the Reduced Order MCS in the
Case of MIMO Systems

Stability of the MCS ‘algorithm will be investigated in the case of Multi Input

Multi output (MIMO) systems. The structure of plants under consideration 15 2

generalisation of the SISO phase canonical form previously investigated at the beginning of
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this chapter. Consider the disturbances of a free MIMO plant described by the following
state space equation:

x(t) = A(e)x(t) + B(t)u(t) (4.76)
where, x=[x,, x,, . . . ., x],xeR™anduR™

The matrices A(f), B(¢) are given as below

An A‘Ik Bn Blk
A=+ . |, B@H)=| i . (4.762)
Akl Akk Bkl Bkk

where k is the number of degrees of freedom in the plant and ni is the state dimension of

each degree of freedom. It assumed that £ < n. Also:

0 1 o 0 - 0
: 0 0
0 0 10 - 0 C.
A =] ; R A= T
i » A 0 . 0 (4.76b)
0 0 1 a
" a.. .
|~ i | v "
[ 0 0
5 g : (i=1...n) 476
it = ’ [ = : ¢
o " |0 (j=1...k) (4.762)
| i i
u' =lu, ou, - ou (4.77)
. :
Zni =n (4.78)
i=l
and
xT =[x, ... x, x Xy eee Xy oaen X,
i [ 11 1 21 2 Kl & ] (4.79)
Ye :[yn cer Ve Vao e Yoo oo Yo e ylm]
The reduced order plant model together with unmodelled dynamics may be written as:
x, () = A (1)x, () + B,(Ou(r) +d(x, 1) (4.80)
where the matrices A, (7) and B, (f) are
All Alk BII Bu—
A=t . |, B(H)=| i . i (4.80a)
Ay o Ay B, - B, :
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where % is the number of degrees of freedom in the plant and 4 is the state dimension of

each degree of freedom. Also:

0
0 1 0 0 0
0 0 10 - 0 S
4, =| : - o A4, = 0 o 0 (4.80b)
0 0 1 a a
\__asn @z - o T " "
and d(x,,t) is defined as:
d, 0
d : (i=1...,h)
dix. . N=| 2|, d = 4.80c
( r ) : J O (j-:l’._,’k) ( )
d, d

The matrix d(x,,7) represents the bounded effect of unmodelled dynamics, plant parameter
variations and nonlinearities in the plant. The integers Ai (= 1,...,h) are assumed to be

known. The plant parameters and the disturbances &, (j = 1....,h) are assumed to be

k
unknown and time varying. The term > hi = h, together with

=1

xl =[xy o Xy Xy e Xy e X e X |
T (4.81)
YVee & [J’n e Y Yuo oer Yo oeee Vo oee )’Jm]
The stable reference model is given as: |
t = Ax +Br (4.82)
where
Ay = O an 0
A=+ . B, = : (4.82a)
0 - A 0 B..
and
[0 0 0
| 0
0 1 0 - 0 :
A= : : : |, B.= (') (4.82b)
0 0 0 1
; bmhl’
it iz iz 0 "D ini
Then, (4.83) can be rewritten as
%,(1) = (4, +64,(&))x,(6) + (B, + 3B, (0))ur) (4.83)
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where, 84,(r) and 8B, (t)are the effect of the unmodelled and unknown dynamics in
A(t) and B,(f) respectively. The MCS control signal is given in (4.16) then, (4.83)
becomes

1,(0) = (4:(0)+ B (O)x, (1) + B (DKo (1) (1) (4.84)
where, A7(t)= A, +&4,(t) and B (t)=B, +8B,(f). The model-following error x, is
defined as:

x,(8) = x,, () - x,() (4.85)

so that from (4.82) and (4.84), the error dynamics of the closed loop system becomes:

%,(1) = A,(0)x, (1) +(4,0(r)- B; K (#))x, (1)

. (4.86)
HB,o() - B! (13K () (1)
where, 4,,(r)= 4, ~ 4}(t) and B ,(¢) = B,,. Ao(r) will take the following form
0 0]
0 0
a5 ay, ay,
A1) = (37)
0 4]
0 0
 a tk 1 ay, af;u
The disturbance term due to the unmodelled dynamics may be written as
d(x,,t)=Br (4.88)

where, the reference inputs r; (i = 1,..., k) are different from zero and the matrix B’ can

be written as follows
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(4.89)

Nix ™

The matrix (4.89) is bounded and time varying depend on d(x,?) and #(¢). By using (4.86)

and (4.88) each disturbance term d;; (j = 1,...,k) can be written as:
h
d;=2b.n (4.90)
=1

In general, the reference inputs r; (i =1,...,&) are slowly varying, for example a step
function. Equation (4.86) can be rewritten as:

x,=Ax, -IW, (4.91)
where

W, =(4, - A,)x, +Bu+(B - B (4.92)
The argument “7” has been dropped for the sake of simplicity and the control input is given

as

h k )
up = ;(Kl(pi) + KZ(pi))xf + ;(Krl(pi) + KrZ(pl'))rj (4-93)

- with

{
Klpi = J-apiyphpxidr
0

=1....k
Ky = B ¥ i p=1..,
N . " i=1...h (4.94)
K"Pi :,"a(r)};_f +yphprde j-_" 1,...,k
0

Krlpf = ﬂ(r) pjyphkrj

The sign conditions associated with the application of (4.23) are

I



a,b, >0

B,b,,20

a(r)ij” >0 (4.95)
ﬂ(r)pjbpp >0

The vector W, is further expanded to:
~ . 0 -
h k k
,Z:,:(a" - a, )% +,Z=|"buuj +§bmr}. b

W, = : (4.96)

0

h k : i
Z(aki _amkk)xi +§bkjuj +§brgrj _bmkkrk

-1 |

i

In order to proof the hyperstability of the reduced order MCS control in the case of
MIMO systems by Popov’s criterion, (4.91) is split into two parts as shown in Fig. 4.1: A
feedforward block and a feedback block. For the asymptotic hyperstability of x, , the
following two conditions must be satisfied.

(a) - the forward block represented by the triple {Am,I ,,,Ce} is SPR,

(b) - the feedback block ensures the integral inéquality

y
{ [yiwat >} (4.97)

The B matrix is replaced with. B’ due to the unmodelled dynamics and external

disturbances, with entries b; and —b; . Let

B u=Blu
where B is a block diagonal matrix given by
B” =diaglB;, | B, | - Byl
and _
L - T
B; =[0 - 0 bu‘]

It is assumed that along control trajectories,
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Ay

A~

) _b —Zb /u,

ﬁt:

The adaptive weights are described in the following forms
a:diag([() -+ 0 a]] [O e 0 az] [O e 0 ak])
ﬁzdiag([o eee 0O ﬁ:] [0 e 0 ﬁz] [0 e 0 ﬁk])

There are four integral inequalities to satisfy, which are given in (4.30a)-(4.31b).

(4.98)

Following inequality (4.30a) can be expanded, with the introduction of B” instead of, B;

as

I

I{bl‘l’al[ylhxuj‘ymxnd’f —a:l /(b,'l'a,)+---+
o

f ‘
ymxkhJ.J’lhxu.dT* a, /(b:;al )]+-..+
: (4.99a)
i
o P
0

t
+ ..+ykkxkhjykhxkhdr - afh /(b;ak):l}dt > —cf]
0

I:ach term in Equation (4.99a) can be written as:

Ib a, { VX ka.ymx HAT—al, /(b;'a,.)}dt

which satisfies a Popov criterion provided that «, has the same sign as &; . Bringing
together all such terms in (4.99a) and (4.30a), the Popov’s hyperstability criterion will be
satisfied. Similarly (4.30b), (4.31a) and (4.31b) can be expanded as follows:

JL {bl‘l'ﬁl [yl:zhxlzl +e '+y12hx:h]+' by B, [y:hxlzl kY g Xy ]}dt > —c}, (4.99D)

]

In a similar manner to (4.30b), each term in (4.99b) can be written as

I b, (v}, )t

satisfies a Popov criterion. Taking together all such terms in (4.99b), inequality (4.30b)
will be satisfied. Then (4.31a) becomes
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4

j{b,‘;a.[y.hFIYuhrdT =B /(bl.{al)
0

lo

+~"+y|hrJY|hrdT ~ o ! (b:;al):l
! (4.100a)

tee .+b;ak|iykhrjykhrdr —b ! (b,;;;ak)
0

+...+ykhrj.ykhrd‘r - bmhk f(b;ak)}}dt = —C;
0

Each term in (4.100a) can be expressed as:

]l‘bi:'a;{ymrj Yl dT = b,y /(bi:'ai):‘dt
1 0

Taking together all such terms in (4.100a), inequality (4.30a) and (4.31a) will be satisfied.

Together with

4

_[ {bf{ B, (}’3;,"2 )+. -tby, (y,fhrz)}dz >—ca, (4.100b)

o

4
Each term in expression (4.100b) i.e. j by B ,.( yir’)dt ensures a Popov criterion. Collecting

to
together (4.99a), (4.100b) Popov’s criterion (4.23) is satisfied therefore, the given MCS
adaptive law (4.97) guarantees the asymptotic hyperstability of reduced order MIMO
closed loop systeras as required.

The nominal plant parameters: of the MIMO systems are replaced with lower
order plant parameters in the reduced order model together with unmodelled dynamics and
the unmodelled dynamics are treated as disturbances. It is assumed that the disturbance
term due to unmodelled dynamics is slowly varying (may be the plant is over
parameterised), therefore Popov’s method is used to prove the stability of the reduced

order MIMO MCS control.
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4.6 - STABILITY ANALYSES OF THE REDUCED ORDER MCS
CONTROL BY THE LYAPUNOQV EQUATION

The MCS algorithm is stable in the presence of slowly varying disturbances. In |
the previous section the stability of the reduced order MCS control was proven by
Popov’s hyperstability theory. In this section stability of the reduced order MCS control in
the presence of rapidly varying disturbances due to unmodelled dynamics and
nonlinearities in plants will be proven by the Lyapunov equation method. The Lyapunov
function is an important method to prove the stability of plants which are subjected to
rapidly varying disturbances and it is very suitable in examining the upper bounds of

convergence of the error.

4.6.1 - Siability Proof of the Reduced Order MCS Control in the
Case of SISO Systems by the Lyapunov Equation

From (4.4) and (4.7) we obtain:
x.e = Amxe -H(Af —Am)xr —Bru+er_d(xf’t) (4'101)

where, the disturbance term is d(x,,f) = 84(¢)r . Then, equation (4.101) can be written as
%, = A,x,— 1,7, | (4.102)
wherg
W, = (4, ~A,)x, + Bu+(M, -B.)r (4.103)

(4.103) can be further expanded to:

W, = : 0 , Woe R™ (4.104)
h .
> (—a, + a, )x; +bu+ (Ga— bm)r

The MCS control input « is

115




P2

u=K(t)x, + K (t)r (4.105)
The adaptive gains are written as

K(O)=[k, Ky .o )= K (0)+Kp(t)

Ko(O)=[k, K o hy | = Keal) + K1)

where K, (f), Ku(f) are the integral gains and K,(f), Kg4(7) are the proportional

(4.106)

gains.
. Km (f) = J.al.yhx,.df
K(t)= B,y.x
(1) /f,y,,x, =1 h (4.107)
KR.:([) = J‘aryhrdr
[4

KRﬂ(t) s Bt

The output error equation is derived from (4.104), (4.105) and (4.106) as follows -

%, = A x, ~bw'®-bw"¥ ~d(x,,1) (4.108)
with

d(x,,f)=[0 0 ... d]"; d(x,.t)=4(0)r (4.109)
where

sa(ty=[o - o e =[o ... 0 4] (4.110)
This disturbance is assumed to act only on A" state, therefore (4.110) can be written as

d(x,,1)=bw’d, : (4.111)
Then, the error equation becomes

%, = Ax, ~bw(@+¥ +d)) (4.112)
Equation (4.112) defines a hyperstable system, shown in Fig. 4.2.

b=[0 - 0 1] (4.113)

w{x r]T (4.114)

4 t
O = |ibljayhx,dr+am, —al,...,blj.ogz,,xhdr +am, —a,,
° | ’ (4.115)

‘ T
b, j- ay,rdr — bmil
4]
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&= b,ab” Px,w : e (4.116)
where, @ is integral gain vector and b, is the last and the only non-zero entry of the B,
matrix, and proportional gains vector is

¥ = [B, B %, e BB BB (4.117)
The system defined from (4.108), (4.114), (4.116) and (4.117) is an asymptotically
hyperstable provided that d € L?, hence Popov’s hyperstability criterion (4.23) becomes:

ab, >0

B =0 (4.118)

0
v

0 +< > ST-4y'6 | Y

~-wl (®+¥+d)

Adaptive )
Block

Fig. 4.2: Error dynamics represented as a nonlinear feedback system

It is assumed that the disturbances term d(x,,f) due to the unmodelled dynamics is rapidly
varying therefore, the stability of the system is proven by using the Lyapunov equation

method which is given in Appendix 3. The Lyapunov function can be written for SISO

plant as below

V(x.,®) = x"Px, +bic1>’"c1> (4.119)
[#4

1
Equation (4.119) is positive for all x, # 0 and ® =0 since P is a symmetric positive
definite matrix and (b, @) is positive scalar. For the sake of simplicity V(xe,q)) 1s denoted

by V'in the following section
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ba

av .
o 27 Px, +x] Px, +

= (Amxe -bw'® —-wT‘I’)T Px, + fo(A,,,Ja:‘z —bw'®d- bwT‘P) |

+2 o0
ba
ﬂt =(-pTwb” - @ Wb +x] AL)Px, +
x! P(4,x, —bwfm—bw”"\?)+—2-—d>fq> (4.120)
ba

=—xTQx, ~ 2b,fx] Pbb" Px,w’w
The above equation is rearranged by using (4.113), (4.4), (4.6) and (4.25) as follows:

av
dr

= —xTOx, - 2b,px] Pbb" Px,w"w —2x] Pbd, (4.121)
where, ( is positive definite and Pbb™ P is positive. The Lyapunov equation will be
satisfied provided that (4.121) is negative in the x, space. Then, using norm ¥ can be
written as follows
(., ®) < - A

From (4.113) b =1

(4.122)

max(P )] ll
_then V is negative and x, will be in the

T Am(@)

hypersphere stability region A determined by:

2’1mu(P)|dlImx .
< 7 (0) } (4.123)

where |d;| is the maximum value of |d(x,,t)| and A, (P), Ane(Q) are the largest and

A= {xe R"

the smallest eigenvalues.of P and (, respectively.

A SISO plant is represented in the reduced order MCS control by reduced order
piant parameters together with the unmodelled and unknown dynarmcs which are assumed

as disturbances acting on the system.
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4.6.1.1 - Derivation of a Lyapunov Equation in the Case of ESH
Materials Testing Machine

The plant has a second order transfer function during normal operation: under
load control, the supply pressure is 13.8 MPa. The MCS control algorithm is implemented
on the machine in a reduced first order form. Therefore, the plant is described by a first
 order model including some unmodelled dynamics which are assumed acting on the system
., as a part of disturbances. In the case of the ESH maternials testing machine an aibitrary
weighting’ matrix chosen as Q = 1], for a given settling time, #, = 0.35 s and the positive
deﬁ-nite matrix P, which is a solution to the Lyapunov equation, is found to be
P =1[0.0438)

. Equation (4.121) can be written in the case of the ESH materials testing machine as

% = —x2[1]x,, ~ 25 fir,,(0.0438)(00438)x, W' w - 2x7,(00438)d,  (4.124)

xr
where x, =[x, |=[x,]. & =1, w:{r}, B =0001

Then (4.124) can be rewritten as

dv .
= = —x? - 38369 x 10 x}{x? +r*) ~ 0.0876x,d, (4.125)

dt

In this equality —x? and —x? (x,2 +r2) are negative definite terms. Therefore, if d, = O then-

the first derivative of the Lyapunov function (4.124) is strictly negative; hence asymptotic
stability is assured. When d1 # 0, it was shown in [12] that a residual tracking error is
present whose estimate is given by ,

x| < 0.0876d,] (4.126)
From (4.125), it is observed that if "xe||20.0876]d1[, then ¥ is negative. It can be
concluded that x, enters the hypersphere region A defined by: |

A={x, R"/|x[|<00876d,]  } (4.127)

where Ia’1 lmu denotes the maximum value of |d(x,,t)! .
As it is shown above the Lyapunov’s method is used to prove the stability of the

reduced first order ESH materials testing machine.
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4.6.1.2 - Derivation of a Lyapunov Equation in the Case of the
Electrohydraulic Actuator Plant

The plant has a third order transfer fuhction in normal operation (accumulators
on, supply pressure 110 bar). The MCS control is implemented in a second order SISO
form. In fact, the plant is higher order than MCS. It has been observed that MCS possesses
a degree of robustness to mismatches in orders, e.g. [12], [13]. The plant can be described
by a second order transfer function together with a disturbance term due to the unmodelled

terms and nonlinearities in the plant as shown below
X, 0 11]x 0 0 _
o= +| . ju+ (4.128)
X, 0 a |x 1 d,

An arbitrary “weighting” matrix was chosen as () = 0 1 and for a given settling time,

1,=10.25 s a positive definite matrix to the Lyapunov equation solution, P was where

_[47812 00195
100195 00162

From (4.121), the Lyapunov function for the electrohydraulic actuator plant can be written

@ 10 0] x,
i Y X,

47812 00195 0[01 1] 47812 00195
00195 00162(1 0.0195 00162

X
x,_,,[ ] ‘ o ]4.7812 0019570
x, x, rlx,1—2{x, x, .
x, ' 77 : 0 72l oo0195 oo162 1]
r

The adaptive weight § was § = 0.0001, then (4.129) becomes

as

-2, fx., xez[ ] (4.129)

e

dV . 2
— -"(1 Ox? + sz) ~00002(0.0195x,, +0.0162x,,) ("12 T+ rz) (4.130)

—(0.0390x,, +0.0324x,, )d,
In (4.130), —(10x} +x2) and —0.0002(0.0195xfl+0.0162x32)2(x12+x22+r2) are

negative definite. If &, = 0, then the first derivative of the Lyapunov function (4.130) is
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strictly negative, hence asymptotic stability assured. When &, # 0, then a residual tracking

error is presented by

x| < 0.9562|d,| (4.131)

, then ¥ is negative. It can be

> 09562/,

From (4.131), it is observed that if

x¢

concluded that x, enters the hypersphere region A defined by:
A= {x, R/ |x<09562d,| . } (4.132)

xe
- where |d,|__ denotes the maximum value of |d(x,,1)| . The stability of the reduced second

- order electrohydraulic actuator plant is proved by Lyapunov equation method.

4.6.2 - Derivation of the Lyapunov Equation in the Case of
MIMO Systems

As for SISO plants, Lyapunov functions can be used in the case of the reduced
* order MIMO MCS control systems stability analysis. The géneral structure of the reduced
order MIMO systems was given in section 4.5.2. Consider (4.80) with d(x..f) = 0 and with
the reference input elements slowly varying, then the error equation (4.86) with the
| multivariable MCS law of (4.93) is rewritten as:

%, = A x, - B OW—BYW (4.133)
- where B, and A,, matrices are given in (4.80a) and (4.82a) respectively. Furthermore,

@, W and W are defined as:

o=lo, ®, .. o]
with
!
(DP = [bFPIaPTyPhxidf_‘_ampi "apf:”', p= (1’___,]()
| 0, r i=(1....h) (4.134)
bpp'[apjyphrpjdr +bmw} 7=(1,....k)
0

Y=Y, ¥, ... Y]

¥y = [bf’?ﬁl"'y?hx:"bwﬂmyphrr] (4.135)
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T,

W= [xT r]T

r

(4.136)

In order to satisfy the Lyapunov equation, the feedforward transfer function matrix

Ce[SI - Am]_l B, must be strictly positive real. Hence, by using Kalman-Yakubovitch

lemma, we obtain

yln
y:z" =B Px, =C.x,

Yin

where P is the solution to the Lyapunov equation

A:P+PAM:—Q
P>0
@g=>0

Subsequently, the matrices ®, V¥ arewrittenas:
b =T, B Pe W’

W =T,B7 Px, "

where
[, by, 0 0 |
r - 0 a,b, 0O :
a : 0
L 0 0 akbkk_
g, O .. 0 )
By O
I, = . .
é : : - 0
| 0 ... 0 pB.b,]
From (4.133), the Lyapunov function is defined as
®,x,)=x! .1 ol
7( ,xe)erPerrzab o,
p=Y " P pp

For the asymptotic hyperstability, all p @ = 1

(4.137)

(4.138)

(4.139)

(4.140)

(4.141)

k) should satisfy following

condition, @ ,b,, > 0. When differentiating (4.141) along the trajectories (4.133), we

obtain
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k
V= 2T Px, +xTPE, 423 —— 07D
' ’ p=l apbpp

=(-WTYTBT - "B +x] 4, ) Px, + (4.142)

k
X7 P(4,x, - BOW - B¥W)+2Y —— &0
=t &

e
By using (4.138), (4.139) and (4.140) the above equation is simplified to:

V =-x'Ox, - 2W Wx] PBT ;B" Px, (4.143)
where PBIIB' P is positive semidefinite matrix. In (4.143) the terms, -x'QOx, and
~WTWx! PB]"}," BT Px, are a negative definite and a negative semidefinite respectively.
Indicating that V' is always negative in the x, space, provided that x, # 0 and x,, ® are

bounded, then
IV'dt <00
0

Let us consider (4.133), if %, is bounded then x, is uniformly continuous, hence ¥ is
uniformly continuous and following we have

limV =0, lirglxa=0, lim®=0

oo t-30

The above results indicate that the Lyapunov equation method guaranteed the stability of
the reduced order MIMO MCS control in the presence of rapidly varying disturbances due

to the unmodelled dynamics, plant parameters change and nonlinearities in the plant.

4.7 - CONCLUSIONS

In this chapter the stability of the reduced order MCS algorithm has been proven
for SISO and MIMO plants, The reduced order MCS is considered as the standard MCS
. control in which the controlled plant contains some unmodelled dynamics and the
" unmodelled dynamics is treated as a part of the disturbances term which is acting on the

'~ system. Therefore, disturbances havéa a crucial importance in the case of the reduced order

| MCS algorithm stability analyses.

In the first section, disturbances due to unmodelled dynamics are considered

* slowly varying (maybe the plants are over parameterised), hence parameters variation are
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very slow, almost insignificant. In this case the stability of the systems are proven by

Popov’s hyperstability theory. In the second section the disturbances due to unmodelled
dynamics are considered as rapidly varying and a Lyapunov function is proposed to prove
the hyperstability of SISO and MIMO systems.

It has been proven in both cases MCS guarantees the hypersfability of the reduced
order plant. In practice MCS appears to be quite insensitive and robust to mismatches n
orders. The stability of the reduced second order MCS control in the case of the
electrohydraulic actuator plant is proven both by Popov’s hyperstability theory and the-
Lyapunov function. Similarly, the stability of the reduced first order MCS control is
proven in the case of the electrohydraulic ESH materials testing machine by using both
methods.

In practice, the order of systems are limited. Most of the systems have an order
less than 5. The MCS control can be very effectively implemented in only first or second
order form hence, in many cases the reduced order models are maximum 2 or 3 degrees
tower order than the estimated original plant model.

The adaptive system with higher order unmodelled dynamics are gain sensitive
and even small disturbances can cause instability. To overcome instability problem in the
case of the reduced order MCS, the adaptive weights (o and ) should not be increased
beyond a certain point. The larger adaptive weights will activate the higher order
unmodelled part of the system and this could lead a instability. In addition, if the reference
signal is rich in high frequency content this will also excite higher order dynamics of the
system. |

In practice, using the reduced order MCS control has several advantages as
follows: Firstly most of the systems work in the fow or mid frequency range, therefore
implementing lower order controllers or modelling systems with a lower order model can
be very effective since the high order dynamics of the system are not contributing much
into the plant output response. Secondly, if the system mode! is more than 5" order the
implementation of the controller can be computationally very cumbersome and it may not
- give a sensible result due to the fz{ct that the plant is over parameterised. Thirdly, the
implementation of the reduced ordef MCS controller is very easy and it does not require
lower order plant parameters for implementation. In the case of the reduced order MCS

control implementation, the control scheme uses a reference model which is lower order
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of the plant in order.

It can be concluded that in

of bounded disturbances due to th

nonlinearities in the plant.

than the estimated nominal plant model and the reference model matches the dominant part

practice initial states, parameters and disturbances can

not be beyond certain bounds, therefore it is not necessary to guarantee stability beyond

these bounds and it has been proven that the reduced order MCS is robust in the presence

e unmodelled dynamics, plant parameter changes and
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CHAPTER &

APPLICATION OF MCS TO AN
ELECTROHYDRAULIC ACTUATOR PLANT
TOGETHER WITH COMPARATIVE
IMPLEMENTATION STUDIES

5.1 - INTRODUCTION

The purpose of this chapter is to present the results of the application of the
1 Minimal Controller Synthesis (MCS) algorithm on an electrohydraulic actuator plant. The
results obtained using the MCS algorithm are compared with those produced by
. Proportional Plué Derivative Feedback (P+DFB) control in the latter part of this chapter.
The aim of the MCS is to achieve excellent closed loop control despite the
- presence of plant parameter variations, external disturbances, plant nonlinearities and
| dynamic coupling within the plant, in a similar manner to MRAC.

The Minimal Controller Synthesis (MCS) algorithm has been shown to be
effective in a number of diverse areas. The MCS algorithm is a good control strategy. In
particular, thig chapter‘shows how the algorithm is successfully applied to the control of an
electrohydraulic actuator plant. The MCS algorithm appeared to be robust against the
“unknown plant dynamics, external disturbances and parameter variations within the plant.
In this chapter, the MCS is implemented in a second order reduced order form. In
its nominal condition, the plant has a third order transfer function. For the electrohydraulic
actuator plant, MCS can be reco:mmended as a robust controller against the plant

parameter changes, external disturbances and nonlinearities in the plant.
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5.2 - THE ELECTROHYDRAULIC ACTUATOR PLANT

The electrohydraulic actuator plant consists of a hydraulic pump, a two-stage
servo valve, two accumulators, a single rod actuator and a hydraulic arm in Fig. 2.1. The
gas charged accumulators placed either side of the actuator have a high compliance and
sappress high frequency supply pressure fluctuations at the servovalve resulting from high
frequency fluctuations in the load flow.

The hydraulic pump can supply a maximum pressure of 172 bar. During the tests,
the maximum pressure supplied by the hydraulic pump is limited to 110 bar. The constant
pressure hydraulic power supply is an integral part of the actuation system, with flexible
hoses connecting this power supply to the valves which direct the flow to the actuator.
The electrohydraulic servovalve consists of a pilot spool valve and main spool, having an

electrical feedback path to the servo amplifier.

From the system identification tests, it is found that the numerator term is a gain
and this gain term is very sensitive to changes in operating conditions. The position error

problem occurred when operating with a load force.

5.2.1 - The Actuator Linearization

From Newton’s second law and Equation (2.9) (in Chapter 2) we can obtain:

AP - P)-fx-T=mx (5.1)
where f, is the coeflicient of friction, m, is the mass of the hydraulic arm as shown in
Fig. 2.1, F'is the force on the actuator piston, 4, is the effective meanrarea of the actuator,
and T is the force due to the mass of inertia which is comparable small therefore it can be
neglected. The actuator is a single rod actuator therefore, the effective area of the first
chamber is larger than the second one. The ratio of the effective area of the actuator
chambers can be represented accurately by the relationship

A, = 0864, (5.2}

A+ 4,
-

and the effective mean area of the actuator, A, =

From equation (5.1), it follows that:
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(P-P)= El—(mpx + /%) (53)

av

Differentiating (5.3) with respect to time gives: .

(B~ )= -+ 1.5) (5.4)

av

From Equations (2.2) and (2.3), the hydraulic flow equations

Flow in:
v,h
= 4x+1t 5.5
0= i+t 55)
Flow out:
. VP
{ 0, = Ax--2 (5.6)
The tank pressure is assumed atmospheric hence, mean flow rate is
v (B -F
0, = wa+“—(}\f—?_) . (5.7)

2 Although, the volume changes during the

. V, +V-
where V,, is the average volume, V,, = —’—2—-—

operation of the system it is assumed constant in this case for the sake of simplicity. From

equation (5.4) and (5.7)

Q, =A%+ 5‘;" (mpii‘f +f‘i) (5.8)

av

Taking the Laplace transform of (5.8)

NA A?
o _f oS | Ma (5.9
V,m, m, v.m,
which gives:
NA,,
V. m
—Q’-‘— = o (5.10)
TS+ A st + Ny |
m, V.m,

The linear representation of the system is constructed from Equations (5.1), (5.3), (5.4),

(5.7) and (5.10) as shown in Fig. 5.1.
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Fig. 5.1 Linear description of the electrohydraulic actuator plant.

The control flow, O will change with valve sizing constant, electrical input current and

pressure drop. These characteristics are modelled well by the theoretical square-root

relationship for sharp-edged orifices:

0, = Ki\JP, (5.11)

‘where K is the valve sizing constant, 7 is the input current to the servovalve and P, is the

“pressure drop.

5.2.2 - Flow Control Servovaive (E760 Moog Valve)

The plant is actuated by a standard Moog E760 four way double acting

“servovalve which is operated by a torque motor/flapper. The servovalve is connected to

rfactuator-arm. In flow control servovalves under constant load the control flow

s proportional to the electrical input current. The load pressures effect the flow of the

“the cylinde

servovalve as shown in Fig. 5.2. The centre of this plot is the null stability region in which -
the load effects is negligible.

Appropriate transfer functions for standard Moog E760 servovalve were given in

{1]. The electrohydraulic servovalve has many nonlinear characteristics. In addition, many

parts of the servovalve is so small therefore it is not easy to analyse.
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Fig. 5.2: Flow control servovatve (flow-load pressure}

The dynamic response of Moog flow control servovalve was described in the low
frequency range by the following first order transfer function:

s
Q_f( ) _ K(-—l—») 5.12)
I(S) 1+

where K is the servovalve static flow gain at zero foad frequency drop and is the

apparent servovalve time constant (seconds). In the mid frequency range, the servovalve
was represented by a second order transfer function. Most of these transfer functions were
linear, which approximated the response of actual servovalve when operating without

saturation shown in Fig. 5.3.
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Fig. 5.3: Torque motor and valve spool operation.
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5.3 - LINEARIZATION OF THE SYSTEM

The electrohydraulic actuator plant contains significant nonlinear elements
(servovalve, mass of the hydraulic arm). It is necessary to know a linearised representation
of the plant for the design of a conventional fixed gain controller for the comparative test

[2]. The transfer function of the plant can be written from the input/output relationship as:
s)
Gp(s):—u—-zGl(s)Gz(s) (5.13)

where G, (s) is the actuator transfer function and Ga(s) is the servovalve transfer function.

Each part of the plant modelled as follows:

NA,,
V.
Gy(s) = e — (5.14)
S3+ fs s2 + N LU
m, V,m,
K
G,(s)=. = ;gy (5.15)
+—=—+1
@ @,

where K is the servovalve gain, @, 18 the natural frequency, ¢ is the damping coefficient

of the servovalve, m, is the mass of the actuator hydraulic arm, f, is the coeficient of

friction of the actuator cylinder, V., is the average volume of the cylinder and N is the bulk
modulus of the hydraulic oil. |

As a result of this description, the linearised model of the plant is of 5™ order,
includiﬁg a free integrator. In this case various further simplifications can justifiably be
made. For instance, the pole of the Ga(s) is typically much faster than those of ((s), so
that the plant can be modelled by a 3 order transfer function. Another possibility is in the

low frequency range the servovalve can be represented by a first order transfer function

therefore, the plant can be described by a 4" order model. And similarly, the relative

locations of the servovalve and actuator arm poles can lead to 2™ order models with a free

integrator.
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5.4 - SYSTEM IDENTIFICATION TESTS

The system identification program is a part of the “WinCtrl”. "WinCtrl" is a
windows based controller soﬁwaré package developed by [3] and it runs under
Windows 3.1. The software is very flexible, it allows the user to conduct the system
identification tests on systems under conventional controllers or the MCS control.
Controller hardware is a 386 PC machine equipped with 12-bit D/A and A/D converters.

Several system identifications tests are conducted on the open loop plant, which
yielded number of transfer function models for different operating conditions which are
listed below:

f1] - Supply pressure 110 bar, accumulators on,

[2] - Supply pressure 110 bar, accumulators off,

The system identification tests are irhplemented on the plant under a proportional control

using different amplitudes (low and high amplitudes) and frequency ranges ({low and mid-

frequency ranges).

Order | Condition [1]: Condition [2]:
110 bar;, 1106 bar;
Accum. on Accum. off

5 num=5.6746x10° num=1.31x10°
den roots: den roots;
0,-7.9-j26,-7.9+j26; 0;-35+25;-35-j25,
-24+15,-24-j15 -24;-3.2

4 num=9.11x10* num=7.08x10*
den roots: den roots;
0:-15.5;-7.51+j22.9, 0;-4.32,-35.8+j23 1,
-7.51-j22.9 -3523.1

3 num=2.83x10° num=17.9x10>
den roots: den roots:
0;-8.80+j16, 0;-40.9+j20.3;
-8 8016 -40-20.3

2 num=62.4 pum=108
den roots: den roots:
0:-4 58 0:-103

Table 5.1: Identified plant transfer function data.

The transfer function of the electrohydraulic actuator plant is found by a system

identification test. The system is subjected t
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produced a corresponding output y under the proportional controlier. The test signal was a

swept sinusoidal signal of frequency 1 to 12 Hz and amplitude 1 Volt. The proportional

controller gain was k, = 7 and sampling interval A = 5ms. Hence, the system identification
tests are carried out in mid-frequency range. In this way, the dominant part of the plant is

modetled as the transfer functions of the system.

_ For Condition (1], the 5t order model poles are dominated by the conjugate pair
at s =79 j26 for this reason the actuator arm poles at 5= -24 % 715 may be ignored.
Similarly the 4" order model poles are dominated by the conjugated pair at
§=751% j229 so that the actuator arm pole at s = -15 can (as an approximation) be

ignored. This ensures that the given 3 order model is relevant in Condition [1] for the

normal operation case.

-
(%]
T

yps

Volts

2 4 6 8 10 12 14
Time(Seconds)

Ll
—

Fig. 5.4: Fifth order model (supply pressure is 110 bar, accumulators on)
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Fig. 5.6: The second order model {supply pressure is 110 bar, accumulators off)
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For Condition [21 the given 2™ order model is a justifiable approximation of these

condition dynamics. The fourth and fifth order models are not matched by any of these

conditions, showing such models are over parameterised. It is observed that the plant has a

nominal third order transfer function in the mid frequency range with a free integrator.

Therefore the second order model which are derived from system identification tests can

be considered as lower order models of the original system which is the most relevant

- approximation for condition [2].

- It is possible to compare the reduced order models of the original plant which are
~derived from system identification tests with the models produced from linear model
- reduction methods. It is assumed that the second order model that is derived from system
' identification tests is a good second order approximation of the original plant therefore, it
s compared with the lower second order models which are derived from linear model
~reduction methods in Chapter 3. It is observed that Routh stability of Pade” method,
' dominant eigenvalue and frequency matching method, balancing method and stability
3 equatibn method are produced second order models which are very close agreement with
the second order model that is derived. from system identification tests. This indicates that
" some of linear model reduction methods can be used very effectively in the case of
 producing lower order models from the nominal transfer function of the original plant.
Hence, the reduced order models are derived without conducting system identification
tests which are comparatively easy and need less time so, in many cases using linear model
reduction methods may be preferable.

The plant dynamics are changed by changing the plant supply pressure and/or the
" accumulators settings. The plant has higher bandwidth when the accumulators are
" qwitched off. As it is shown in Fig. 5.7, the system is more stable when accumulators are
switched off having higher bandwidth is the indication of it. Although, the plant is little
more noisy when it is working in this condition still, it shows its full performances due to

the fact the hydraulic {luid can be fully compress and the nonlinear effect of accumulator

can be avoided when they are in off position.
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Fig. 5.7: The effect of the accumulators posttion on the system dynamics (on or off)
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5.5 - IMPLEMENTATION OF CONTROLLERS

In this case the reference r is chosen as a square wave. “WinCtrl” software

package is used to implement both the Proportional Plus Derivative Feedback control and

the MCS control strategies.

During the experiments, the control problem is to ensure that the measured
distance y closely tracks a given reference signal 7, despite changes in servohydraulic

characteristics.

5.5.1 - Proportional Pius Derivative Feedback Control (P+DFB)

Firstly, the Proportional Plus Derivative Feedback Control is implemented to
control the electrohydraulic actuator rig. This control strategy requires knowledge of the
plant dynamics, in the same way as do other conventional controllers. The third order
model is chosen as the nominal (condition [1]) transfer function of the system and is shown
in Fig. 5.8 (tabelled ‘Gp’), which indicates sufficient low frequency gain (the free
integrator is the main reason), but a requirement to increase the margins (from 2.1 dB and
55°) and closed-loop bandwidth (from 10 rad/s). A P+DFB Controller is implemented with
a proportional gain ¥, = 1.0 and a derivative feedback gain k, = 0.1. The resulting open
loop transfer function plots are also shown in Fig. 5.8 (labelled ‘GH”), which yield margins
of o dB and 61°, plus the bandwidth is raised to 18.2 rad/s. The closed-loop step response

4

— - =04s, with an oscillatory component
(061x182) - ¥ componer

settling time is predicted to be £, =

containing approximately two overshoots, this is assumed to be an acceptable

performance. The controller is implemented in discrete-time as follows:
u(k) = kpek) - kpkaly(k)-y(k-0]/4 | (5.16)
where u(k) is the current control signal, e(k) the current tracking error, y(k) the current

measured actuator arm position and A is the sampling interval.
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Fig. 5.8: Plant and plant controller (P+DFB) bode plots: Gp: plant;
GH: plant-controller
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5.5.2 - The MCS Control

For the MCS case, the plant model is not required. The synthesis procedure

commences with the derivation of a reference model equation. The reference model

parameters {Am, m} are deduced from the settling time 7, together with zero steady-state

errors. Firstly, an estimate is made of the nominal plant order and the order of the MCS
algorithm matches this figure. The plant would normally expect to implement a 3-order
algorithm. A third order MCS formulation would normally be necessary, since the plant is
itself third order. The second order MCS reference model is used to control the system.
The MCS control possesses a degree of robustness to such mismatches in orders. It is
claimed that the reference model could even be removed from the design and the reference
signal » could be fed directly into the adaption algorithm [4]. The second order MCS
control is implemented to control the plant. The discrete-time second order MCS
equations are: Second order MCS control equations (7 =1,2) are summarised below, in

discrete-time scalar form:

u(l) = b (K)r(k) + by (R)xy () + ko (R)x2 (k) (5.17
k, (k) = Ky (k = 1) + By (k)r (k) — oye (k = r(k - 1) (5.18)
(k) = b, (k — 1)+ By, (k) (B) ~ oy (k - D, (k= 1); i=12 (5.19)
ye®)=(16/ 13 Jraa(k) + (47 1552 () (5.20)
ot (K) = X () — %K) (5.21)
X (k) = Xpmi (k- 1)+ Ax,p (k-1) | (5.22)

iz () = (<168 /£ Yot (k = 1)+ (1~ 8A/ 1) (k- 1)
168713 (ke -1) (5.23)

where, o = 8- a\, where {a, B} are the adaptive weights, with a ratio of a/ =10 and

a> 0. The adaptive weights are chosen empirically. Values found to be suitable in this

case are o = 0001 and B=00001, the values having been deduced to be a good
compromise between the speed of adaption and noise propagation. The values of

{k,. ki, k2} are the adaptive forward, position and velocity gains, 7 is the reference signal,

x; (=y) is the measured actuator arm position, y, is the output error, X, is the reference
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~model states and {_is the step response settling time of the reference model, 7 = 0.25 in the

;_'following tests together with the sampling interval, A =5 ms.

Second Order MCS Reference Model

econd order system can be describe as:
= 2, 2., _ 2 :
Epy + 200 5%, + @pXy = @pT (5.24)

ere, @, is the natural frequency, { is the damping coefficient of the system, whered =1

1.e., the critically damping) and #; = 4 .
gwn
he reference model is
Yo = ApXpy + Byt . (5.25)
here Am=[ 02 ! ] ) Bm=[02}
-, —2a, @y

.The required closed-loop step response settling-time is £ = 0.25. The reference model

parameters are:

A—*O 1 B_o
m | 256 32| ™ {256

- The output error matrix is
C, =167 4/1]

C, =[256 16}
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5.6 - COMPARATIVE IMPLEMENTATION TESTS

5.6.1 - Step Response Tests

In these cases the supply pressure is kept to 110 bar and accumulators were on-
line. The conventional P+DFB Controller is implemented with the rig in the nominal
condition (condition [1]) in steady state form. The result of the plant displacement is
shown in Fig. 5.9. In this plot “xm’ is the desired response and ‘x1” is the actual response
of the system. There is good correspondence between the desired and actual responses
apart from small steady-state errors due to the fact that the flow is proportional to the
velocity of the actuator. In addition, the effect of other nonlinearities existing in the system

such as, the spool valve stiction, the friction of the actuator and leakage of the plant.

15 L T ! T 1 1 i T T

O
o
T

1 1 | {

1 1
0 2 4 6 8 10 12 14 16 18 20
Time (Seconds}

Fig. 5.9: P+DFB result for the nominal case (steady-state condition)
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The result of the system under P+DFB control is shown in Fig. 5.9. The
corresponding System responses under the MCS control are shown in Fig. 5.10a, b. There
_ are no significant differences in response between the P+DFB case and the MCS. So, MCS
~ matches the performance of this well-tuned conventional controller, without the need for
system identification and controller synthesis.

This shows that the third order model and also P+DFB synthesis are well
designed. The initial adaptive stage of the MCS control response is shown in Fig. 5.11a
and the gains themselves are shown in Fig. 5.11b. One should note that in this case, for the
. MCS control, there is no requirement for the system identification and controller synthesis.
7 In the case of both controller there is a spike at the beginning -of each step and
- following a steady state error due to the nonlinear relationship between the flow from the
-~ servovalve and the position of the actuator. The flow is proportional to the velocity of the
- hydraulic actuator arm. The plant responses in both cases is nonlinear due to nonlinear
- nature of the hydraulic systems such as, nonlinear behaviour of the hydraulic fluid, friction
in the actuator and leakage in the system. Another nonlinearity in the system was the
accumulators were on-line during the tests.

In case of both controllers the steady state error is positive when the piston of the
~ actuator is extract and it is negative when it is retract position due to the nonlinear effects
 of the mass. The mass is rather heavy (6.7 kg) when the amplitude is negative the piston of
- the actuator is in the retract position and the mass of the hydraulic arm pushes the piston
~ back in to the another end of the actuator forcefully beyond the demand signal. When the
piston in the extract position the force due to the mass of inertia opposes against the load

 force.
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(b) MCS gains

Fig. 5.10: MCS step response for the nominal case (in steady-state condition)
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Fig. 5.11: Initial adaption for the nominal case of the MCS step response.
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5.6.2 - Sinusoidal Tests; Condition [1] to [2]; Supply Pressure
is 110 Bar; Accumulators Switched Off and On

Changing the accumulators to be suddenly off-line and then on-line again
produces significant changes in the plant dynamics. The aim of this set of tests is to
compare the efficiency of MCS in the face of such changes, when compared with the
P+DFRB controller.

The bandwidth of the closed-loop control system is an excellent measurement of
the range of stability of the system. The plant has a reasonable high bandwidth when the
accumulators are in the circuit. If the accumulators are switched on, then the plant
responses to the sudden changes in the pressure, frequency an amplitude are rather smooth
and less noisy compare to the condition in which the accumulators are switched off.

When the accumulators are switched off the plant has a larger bandwidth
therefore it is more steady and the nonlinear effect of the accumulators are neglected.
However, the plant responded to the sudden changes in the pressure, amplitude and

frequency rather roughly together with noise. In addition, relatively large bandwidths mean

that the settling time of the system is sufficiently small.
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Fig. 5.12: The P+DFB controller tracking error, accumulators switched off and on,
supply pressure is 110 bar.

The tracking error (‘xm-x1") response for the P+DFB control ts showed in Fig. 5.12. The
reference signal w;els a sine wave of frequency 3 Hz, amplitﬁde v.vas 2 volt, k, = 1.2 and
k, = 0.1. The corresponding MCS result is shown n Fig. 5.13. with a sine wave reference
signal of the settling time was #, = 0.25s, frequency was 3 Hz, amphtude was 2 Volt and

the values of a, B were {0.01, 0.001}. A comparison of these figures shows that the
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MCS controller outperformed the P+DFB. Fig. 5.14 reveals that the MCS produces a
control signal with a greater amplitude and with more effect. The corresponding integral
square error (ISE) criterion for each closed-loop response shows in Fig. 5.13, that shows
MCS has less slope than P+DFB whether the accumulators are on-line or off-line. When
* accumulators are off position the plant responses has larger amplitude in the case of both

~ controllers, indicating that the plant has higher performance and it is more robust.

| Accum. off Ac?um. on
)

xm-x1

Time (Seconds)

Fig. 5.13: MSC control tracking error, supply pressure 110 bar, accurmulators switched
off and on.
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Fig. 5.14: Contro! signals; supply pressure 1s 110 bar; accumulators switched off and on
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Fig. 5.15: ISE criteria response; supply pressure is 110 bar, accumulators switched off
and on.

In the case of P+DFB control the error is twice larger than the MCS control. When
accumulators are switched off the error increased more rapidly in the case of both
controllers as it is shown in Fig. 15. Under the MCS controller the plant responded to the
- changes in its dyna_mics rather smoothly and rapidly. The plant parameter changes is
introduced by varying accumulators poéition {on or off). Thé resbonées to this sudden
changes in the case of P+DFB control are more rough and noisy. Indicating that the MCS
control can be a good candidate: in the case of systems which are subject to sudden

changes in their working environments or their dynamics e.g., aeroplane.
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5.7 - CONCLUSIONS

In this chapter the MCS algorithm has been applied to an electrohydraulic
actuator plant. The MCS algorithm is applied in Single Input Single Output (SISO) form.
For the nominal operation case, the third order transfer function model is seen to be an
appropriate choice, and this model is used to design a P+DFB controller for the plant. The
P+DFB control matched the design expectations when the plant is operated under the
nominal condition.

The MCS algorithm is implemented on the plant and the closed loop results are
compared with those produced by P+DFB. Under the nominal operating condition, the
two controllers produced very similar responses, despite the MCS controller not requiring
the plant dynamic parameters. Like other conventional controllers, the P+DFB control
design requires the plant parameters for implementation.

This is the second known application of the MCS to the servohydraulic field. The
first known application of the MCS to a servohydraulic problem was given in the paper by
Stoten [4]. Excellent implementation results were also generated from this application,

The MCS algorithm is implemented in a simplified reduced order form. The
electrohydraulic actuator plant has a third order transfer function and the MCS reference
model was second order. The plant- was higher order than the MCS controller. This
indicates that the MCS can be quite insensitive to such mismatches.

It has been experienced that the plant can be controlled under the reducea first
order MCS control as well, in this condition smaller adaptive weights, & and £ are
required. In addition, the settling time of the system will be larger to cope with high order
unmodelled dynamics. The high order unmodelled dynamics are larger in the case of the
reduced first order MCS compare to the reduced second order one. The plant works in the
low-frequency range under the reduced first order MCS lébntrol. However, the plant
output response gets rather slow and noisy, indicating that the reduced first order MCS
control is not capable of showing the whole features of the plant therefore it is not the
ideal solution for electrohydraulic actuator plant.

The nominal plant model has the third order transfer function. It is observed that

the reduced second order MCS control is able to activate the dominant part of the plant
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and it guarantees the asymptotic stability of the system. The plant output response is rapid

together with comparatively small noise.

Simulation and experimental studies have been presented and these indicated that
the MCS control produces excellent results. The MCS control is shown to produce
excellent controlled responses which are in close agreement with the desired responses.

As it is shown by the ISE plot in Fig. 5.15 the MCS controller performed better
than a con\,;entionai éontrol strategy, indicating that, for the electrohydraulic actuator plant
the MCS control algorithm can be recommended as a robust controller against the effects
of plant parameter variations, external disturbances and plant nonlinearities on closed-loop

performances.
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CHAPTER 6

IMPLEMENTATION OF MCS ON A
SERVOHYDRAULIC MATERIALS TESTING
MACHINE UNDER LOAD CONTROL

6.1 - INTRODUCTION

The main objective of this chapter is to present the application of the Minimal
Controller Synthesis (MCS) algorithm on a servohydraulic materials testing machine. The
algorithm has been shown to be effective in a number of areas. It has a simple structure
with relatively few computational requirements per time step. The MCS controller has
been shown to be robust in the presence of unknown external disturbances and
unmodelled dynamics in the plant.

MCS requires no prior knowledge of the plant parameters for implementation,
and yet is guaranteed to provide global asymptotic stability of the closed-loop system,
unlike conventional, linear control strategies e.g. P+1. Additionally, the designer is not
require to synthesize the MCS controller gains, since this done automatically by the
algorithm, given arbitrary (often zero) initial conditions.

The chapter starts with properties of materials being tested. Then, the MCS and
P+I control algorithms are sythesized and implemented on the ESH material testing
machine under load control. During these tests, only the 10 mm diameter aluminium
specimens were used. It is shown that the MCS produces better results than those

produced by an equivalent P+I control algorithm.
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6.2 - PROPERTIES OF MATERIALS

A thorough understanding of mechanical behaviour is essential for the safe design
of all structures, whether buildings, bridges or machines. This is the reason why mechanics
of materials is used in many engineering fields. In materials testing applications, the static
and dynamic properties of materials are measured by conducting tension, compression and
temperature tests.

To investigate the stress and strains of a specimen it is loaded in tension as shown
in Fig. 6.1, The specimen has a cylindrical cross-sectional area. To investigate the stress
and strains in this specimen, it is loaded by axial forces P either side of it. In Fig. 6.1a, the
first plot is showing the original length of the specimen (L) before the loads are applied
and the second one is showing the elongated specimen after the loads are applied. The
axial forces arie produced the internal stress in the specimen which are shown in Fig. 61b,
for the sake of clarity the specimen is cut at the section mn imaginatively The force per

unit area is called the stress which is denoted by ¢ and given by the equation

o= L 6.1)
AP

where 4, is the cross-sectional area of the bar and P is the applied load. The axial stress o

in the specimen is calculated by dividing the load P by the cross-sectional area, 4,. For the

specimen with a cylindrical cross-sectional area, 4, is given below
ﬂD2

P74

where D is the diameter of the specimen. The strain can be described as the elongation of

A 62)

the per unit length, denoted by £ (epsilon) and given by the equation

&= “E (6.3)

where & is the elongation of the bar and L is the unloaded length of the bar. If the material
is linearly elastic then, it follows Hooke’s law, so that the longitudinal stress and strain can
be related by the equation o = E&, where E is the modulus of the elasticity. Then the
elongation of the specirﬁcn can be written as follows

PL
8= 6.4
EA ©4)
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Fig. 6.1: Prismatic bar in tension.

Under the action of the force P, the specimen elongates an amount &, so that the total
length becomes L + &, where L is the original length. The stiffness & is described as the

force to produce a unit elongation, that is, £ = P /6.

6.2.1 - Stiffness in Elastic Region

Consider the specimen in Fig. 6.1 is loaded statically in tension or compression
tests in its elastic region and then it is unloaded as shown in Fig. 6.2. In elastic region no
matter how many times this task is repeated it will return to its original dimension without
significant changes in its properties. This is called elasticity. In this case, the applied load
is below the elastic limit of the material. In general, the elastic limit is slightly beyond, or

nearly the same as, the proportional limit of materials.

157




e

[POMPAE I L ATy B b 0 15 e i, g oS

T O (Stress)
c e
—Eq . - +0,,E = +&
< : » £ (Strain) . =
' 0o, E =&,
h 4

Fig. 6.2: Stress-strain diagram

If we consider & and o representing strain and stress respectively and £, and o their

maximum values, the hysteresis representation may be represented as in Fig. 6.3.

Ta/cro

F 3

Fig 6.3: Hysteresis loop resulting from fully-reversed stress cycling when ﬂ1e material is
in elastic region

6.2.2 - Stiffness in Elastic-Plastic Region

If the specimen is loaded statically in tension then, unloaded statically and loaded
again in compression in its plastic region the stress-strain curve for a such deformation

sequence will form a hysteresis loop, which is shown in Fig. 6.4.

In Fig. 6.5, the specimen is repeatedly loaded in tension/compression tests
(fatigue) in the plastic region then, the internal structure and physical dimensions of the

specimen will be changed. In this plot Ag represents the plastic strain range, since elastic
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strains are comparatively small. When a material such as steel or aluminium is loaded
under a reversed fatigue test into the plastic region, after the first cycle the ductility will be

reduced.

Stress
o, 3
Initial Stress Range
Loading Ao
Strain
N Total Strain
Range

+

Fig. 6.4: Hysteresis loop resulting from fully-reversed stress cycling when the maximum
stress reached in each cycle greater than the yield stress.

Under a reversed fatigue tests in plastic region fatigue will finally take place starting from
one to a few thousand cycles depending on the load force and properties of the material

This type of failure is called as low cycle fatigue.

6.2.3 - Stress-Strain Diagram

The stress-strain diagram gives important information about the mechanical
properties of materials. In general when materials are loaded under the load force the
diagram starts with a slope. In this case the stress is proportional to the strain until the
proportional limit and materials behave elastically. Beyond this point the proportionality
no longer exist. After the proportional limit even a little increment in the load can cause
rapid increase in strain. If materials are loaded in tension or compression beyond the
proportional limit considerable amount of elongation occurs without increment in the load
force. This is called as yielding and the corresponding stress is the yielding stress [1]. In

the yielding region materials behave perfectly plastic.
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6.3 - ADVANTAGES OF USING THE MCS CONTROL IN MATERIALS
TESTING APPLICATIONS

Adaptive control techniques are often used for a plant with unknown and time
varying dynamics. Especially a Model Reference Adaptive Control (MRAC) technique can
make the plant output coincide with a reference output. Since electrohydraulic servo
system are often used under varying conditions, the application of this technique to an
servohydraulic materials testing machine is expected to be very powerful and useful [2].
The Minimal Controller Synthesis (MCS) algorithm was originally developed by Stoten
and Benchoubane [3] as an extension to the Model Reference Adaptive Control algorithm
of Landau [4]. However, the MCS control algorithm does not requires plant model
identification, unlike the MRAC control.

In recent years, adaptive controller have been used in the case of electrohydraulic
systems. Using digital controller have many advantages over analogue controllers
therefore, they have been widely used in many industiries and in the area of materials
testing applications due to their consistency, flexibility and ease of use. The adaptive
contro is implemented in both discrete and continuous time. Digital controller benefits
from new developments in electronic hardware. By using faster computers the efficiency
and the capacity of the materials testing applications can be improved considerably.

In the manually controlled analogue contreller parameters such as the demand
mean level and amplitude, limit setting and controller gains are set using potentiometers.
In the case of the ESH materials testing machine, analogue signals are restricted to the
area of the transducers, servovalve, LVDT’s and load cell, as shown in Fig. 6.5. In this
diagram a 486 PC machine equipped with 12 bit D/A and A/D converters, that converts
analogue output signals from the LVDT, load cell or extensometer into digital form and
digital signal from computer into analogue form and sends to the plant. Every parameter
can be manually adjusted from computer keyboard and complete test set up can be stored
and recalled from the computer. A major advantage of digital systems for materials testing
machines 1s that the intelligence of the system can be used to make the machine easier and
safer to operate. '

The specimens have sometimes nonlinear properties. In addition, the properties of

materials change when they are tested in their plastic region. The stiffness of the specimen
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decreases during fatigue tests. Using adaptive controllers in such applications have many
advantages due to the fact that they can adapt themselves to the changes in the specimen
properties and in the testing machine itself.

In this case, the controller problem is to ensure there is a good correspondence
between the desired and actual responses despite changes in specimen (for example crack
growths, effects of high temperatures and modulus variations) and in the test machine
itself. During most materials tests the charactenstic of the specimen changes, therefore

adaptive control is needed.

6.4 - THE ESH MATERIALS TESTING MACHINE

In order to measure the mechanical properties of materials a small specimens of
the material is tested by using materials testing machine under tension, compression,
fatigue testing. The ESH materials testing machine which is presented in this chapter, has
been developed in the Material Laboratory, the Mechanical Engineering Department at
Bristol University. The plant consists of servo hydraulics, a load cell and a test specimen,
with input # and output y and induced loads are measured by a load cell in series with the
actuator ram.

The rig, shown schematically in Fig. 6.5, is actuated by a standard servohydraulic
system. During materials testing, the control problem is to ensure that the measured force
y closely tracks for a given reference signal despite changes in specimen and

servohydraulic characteristics.
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Fig_6.5: Servo-hydraulic materials testing machine (in tension}.

6.5 - DYNAMICS OF THE ESH MATERIALS TESTING MACHINE

The dynamics analysis of the ESH materials testing machine can be made by
identifying its differential equation of motion. The dynamics of the system as depicted in
Fig. 6.6, contains significant nonlinear elements due to the nature of hydraulic systems:
servovalve dynamics, nonlinear effects of hydraulic fluids. The system consists of a double
ended, balanced actuator, a servovalve, a fixed displacement pump. The hydraulic pump
produces constant supply by using a pressure control valve.

The test specimen is analysed by a mass-spring-damper combination in Fig. 6.6,
including the effect of the mass of the actuator, this combination is symbolised as M, , %, ,
and B, respectively.

The servovalve is a highly nonlinear device. The load flow is represented by the
square-root relationship for the servovalve therefore, the relationship between the flow and
the pressure is nonlinear. In the case of materials testing applications the effects of the

servovalve can be neglected since the load flow variations are very small in such tests.
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Fig. 6.6: Hydraulic system of materials testing machine

In this diagram Q,, O, are flows into the first and second chambers of the actuator. The

jeakage flow O, and the flow due to compressibility O, from the actuator are written as

follows:

0,=C,P, 6.5
V. .

- p 6.6

o anC, - (6.9)

where C, is total actuator leakétge coefficient, V; is total volume of hydraulic oil in the

actuator,.N is bulk modulus of hydraulic oil. The load flow from the actuator can be

written as below

0,=0,+0. , (6.7)
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The load pressure is:
P, =R-F (6.8)
where, P, and P, are pressures into first and second chambers of the actuator. The plant

dynamics were depicted in Fig. 6.7. In this diagram O is load flow, s is Laplace variable, ¢

T e L T s e e T

is strain, A, is actuator cross-sectional area and L 1s gage length of test specimen.

5 u oy O + 1 1| ¢ Xp
—¥ Servovalve —Q——Q—i M L >
X Dynamics - -1 A4, Ls
— VT Acruator and
@ H ,
. clis V., i Specimen
s|t IMs+B,| ;
g P 4 NCP a ol Dynamics
& P;_ 1 ’
AP

Fig 6.7: Block diagram of linearized materials testing machine dynamics

6.5.1 - Under Load Control

€ The nominal linearization model is of second order under load control. From
£ . . . .
% Newton’s law the actuator dynamics together with specimen can be written as:
LLLLLLESL
: ALOAD |
ceLL |7
= F, I Actuaior
A
Fig. 6.8: Dynamics of the actuator and specimen
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In Equation (6.9)

F, =P,
F, =kx, (6.10)
F, =B,x,

where F,, is load force, Fy is spring force, and F, is the friction force, and M, is total mass

of the piston and load referred to piston, &, is specimen spring constant. Then, Equation

(6.9) becomes
F, = M, + B, +kx, 6.11)

In Equation (6.11), B, is viscous damping coefficient for actuator and load, x, 1s actuator

displacement. Load force can be written as:
F,=4,F (6.12)

where P, is the load pressure. From (6.7), the load flow can be written as follows

(6.13)

vV, .
QL:PLCF+4NCP PL

If we take the Laplace transform of the above equation

4
Q= PL[Cp + 4NC, SJ (6.14)

From (6.14) the load pressure can be written as

O | (6.15)

p ? e J

F=F,=kx, and x :f—,x " _E
k.’ Pk, k,

Equation (6.11) can written as:

P, A, ~B,%,—kx,= M3,

. Y (Bo)s s
‘LAp—F M - }(_/I—FzF (617)

i

(6.16)

then,

Taking the Laplace transform of Equation (6.17) becomes:

P, A, =F|st+|—|s+| == (6.18)
? M, M,
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Substituting (6.15) into (6.18) we get

AN PREANE) 69
Vv M, M,

hy
4aNC,

A T

So, the dynamics of the plant under load contro! can written from :

A,
v
F (C” ’ 4NC, SJ
Q—(s) = 3 P (6.20)
£ 5? +[—P)s+( £ J . '
Mf M.f

In this model the servovalve dynamics is ignored as shown in Fig. 6.8.

6.6 - THE ALUMINIUM TEST SPECIMENS

The test specimen is installed between the two grips of the testing machine and
then loaded in tension or compression. The specimens are made of aluminium (stress is

o =150 MPa and Young’s modulus is £ = 72 GPa), with diameter D, = 10 mm and

length L=120 mm and gauge length of 22 mm is shown in Fig. 6.9.

Rad 25 mm Rad 25 mm
5 22 mm 2 22 mm 415
! o !
42535 | l ] #2835
pTs pL0 p175
Rad 25 mm Rad 25 mm
120 mm

Fig. 6.9: The aluminium speéimens
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Aluminium and many of its alloys do not have a clearly determinable yielding
point and they show considerable amount of ductility”. A typical stress-strain diagram for
aluminium alloy is shown in Fig. 6.10. In this diagram, there is a linear region that is
starting from point O to P, in which Hooke’s Law holds and stress is proportional to
strain. Then, a non-linear region follows starting from point P in Fig. 6. 10 which can be

defined by an appropriate mathematical function.

O“ r S
o=/(#)
Y
P/
\Nonlinear
40,002 offset
. o=FEe¢
Linear elastic N
0

Fig. 6.10: Types of idealised non-linear stress-strain diagram for aluminium alloys.

In this diagram: E is the elasticity modulus that is often called Young's Modulus, 6 is the
elongation, ¢ is the stress and¢ is the strain of the material. Aluminium alloys have
proportional limit in the range of 70 to 420 MPa and ultimate stress of 140 to 560 MPa.
The yielding stress of the material is determined by the offset method since it does not
have a clearly definable yielding point. The method is based on an arbitrary rule therefore
its is not depending on the properties of the material. As it shown in Fig. 6.10 an offset
line drawn on the stress-strain diagram parallel to the first part of the diagram (starting
from point O to P in Fig. 6.10) together with offset strain of 0.002 (%0.002). The
intersection of the offset line and the stress-strain line is determined the yielding stress
(point ¥ in Fig. 6.10). This is called the offset yielding stress. For aluminium, the offset

yield stress is slightly above the proportional limit.

= Materials that undergo large strains before failure are classified as ductile.
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6.7 - THE ESH SERVOHYDRAULIC MATERIALS TESTING MACHINE
UNDER FATIGUE TESTS

Servohydraulic materials testing machines are widely used in the case of high
frequency reversal load tests such as fatigue tests. These types of machines are capable of
applying high-frequency alternating loads on specimens in tension or compression control.
Electromechanical machines are not well suited for this kind of tests. The main mechanical
components of a servohydraulic materials testing machine is shown Fig. 6.11. In this
diagram, the crosshead can be moved and clamped at any position up and down the
columns to tests Specimens of different lengths. In general, grips are normally hydraulically
operated. In the case of ESH materials testing machine the lower and upper grips are
mechanically operated. The top part of the actuator is a large screw bolt, and a loading nut
can be moved up and down to clamp test specimen at its length and collets (the smaller
rings, see in Fig. 6.9) the ends of the specimen firmly to prevent slipping. The columns are

fixed to the base platen which also carries the hydraulic actuator.

[ | «— Columns — ]

+—Crosshead
+— -Load Cell

Upper Grip >
§ + Specimen

Lower Grip »
« -Actuator

Platen—»

Fig. 6.11: Servohydraulic materials testing machine
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The actuator piston position is monitored and controlled using an internal linear variable
differential transformer (LVDT) as the feedback transducer, and the force applied to the
specimen is measured by the load cell mounted beneath the crosshead.

In the case of strain measurement, an extensometer is attached to the specimen to
provide a more accurate measure of extension than can be obtained from the LVDT which
is sensitive to load frame deflections. For ESH materials testing machine 1 Volit
corresponds 5 kN. The dynafnics of the servohydraulic machine are effected by the
following parameters: The capacity of the actuator, the flow rate of the servovalve, the
stiffness of the load frame, grip mass, the stiffness of the specimen, transducers accuracy,
the applied load. Under load control, when the stiffness of the specimen decreased the

steady-state error will increase due to the lower controller gain.

6.7.1 - Dynamic and Static Loading

Dynamic loading is different than static loading. In dynamic tension or
compression loading the elongation and the stress in the specimen are initially zero then,
with suddenly applied load they will reach to a certain value. Dynamically applied load
causes vibrations in the specimen. During this kind of tests the kinetic energy of the mass
produces additional elongation in the specimen. For that reason dynamic loads may
produce an elongation which is twice larger than the elongation that is produced the
equivalent static load. In contrast static load applies slowly, gradually increasing from zero
to its maximum value, and then remaining constant therefore, the equilibrium between the

applied load and the resisting force in the specimen always exist.

6.8 - THE CONTRCL LOOP

The Fig. 6.12 shows control loops of the ESH materials testing machine, Three
control modes are provided: actuator position control, specimen load control and

specimen strain control.
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Fig. 6.12: Position, load and strain control.

A mode selector used to select which conditioned transducer signal is to be controlled
variable x(7). The function of the MCS control is to produce an appropriate control signal
u(?) to drive the testing machine actuator in a direction ‘which minimises the error e(t):

e(t) = x, (1) - x(r) ‘ (6.21)
where x,(7) is the demand signal which is usually derived from a computer. The output
goes directly to the servovalve which controls the actuator, i.e. it acts as the power

amplifier.

6.9 - SYSTEM IDENTIFICATION

Conventional control synthesis requires prior knowledge of the plant dynamics. In
this case, a series of system identification tests are conducted on the open-loop plant. Test

specimens are made of aluminium with D, = 10 mm. During these tests, the plant is

subjected to a swept sinusoidal input signal # under Proportional load control using the
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aluminium specimens which produced a corresponding output y (load). The supply
pressure is kept at its nominal value of 13.8 MPa during these tests and amplitude was
0.8 V (a corresponding load of 4.5 kN).

The compliance of the supporting structure on which the actuator, test specimen,
and associated fixtures dynamics are negligible for the low frequency test éonsidered, but
could be significant if the test signal frequencies are increased. Therefore, at high
frequencies a second order model is relevant for the ESH materials testing machine.

The test results are generated from a swept sinusoid input signal, with data
analysed by the Matlab System Identification Toolbox macro oe (output-error method). At
high frequencies, the average second order transfer function is found to be:

2900
G.o(s)=
(9) s% +110s + 2000

(6.22)

The response yp2 predicted from the original input « in Fig. 6.13. The second order model
is judged to be acceptable for the high frequencies, due to given very close correspondence
between yp2 and v .

At low test frequencies the plant can be modelled as a first order. This is because
of the servovalve dynamics and load inertial and friction effects are negligible at low

frequencies.
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Fig. 6.13: The nominal second order plant model (supply pressure 13.8 MPa, under
proportional load control, aluminium specimen with ¢ 10 mm)

6.10 - CHOOSING THE LINEAR CONTROLLER STRATEGIES FOR
THE ESH MACHINE

A suitable set proportional gain reduces the steady-state error. The servovalve
opening is proportional to the servo error. When the gain increased the error gets smaller.
If the proportional gain is high enough materials testing machine is much more able to
closely follow demand signal. Too high proportional gain value could result, though, in
oscillatory plant response, it can even cause instability.

Integral gain is necessary in materials testing applications to apply static loads
accurately and drive the steady-state error to zero. In addition, 1t also removes other
offsets (the servovalve nuil offse:t) in the control loop. Integral action essentially affects the
performance of the machine in the low-frequency range. In the high-frequency range it
does not have significant affect. If integral gain is too high-then, the plant response

becomes though together with low-frequency overshoot.

172



R

The plant response becomes faster with derivative action due to the fact it makes -
possible to set higher proportional gain and introduces damping into the control loop. It
also increases the systems accuracy. An unwanted effect of derivative gain is that it can
make systems noisy in the high frequency range due to increase in the proportional gain.

Therefore, P+I controller is chosen as a good option in the case of controlling the

ESH materials testing machine.

6.11 - IMPLEMENTATION OF CONTROLLERS (P+l, MCS
CONTROL.LERS)

Running under Windows 3.1, all controllers are implemented via Winctrid.
Winctrid is a windows based controller software package developed and improved by [5].
It is used to implement the various controller strategies including conventional and
adaptive controllers. Controller hardware was a 486 PC machine equipped with 12 bit

D/A and A/D converters.

6.11.1 - Proportional Plus Integral (P+1) Controller

Proportional Plus Integral (P+I) controller is a linear, conventional control
synthesis. This control strategy requires a plant transfer function for implementation. A

P+I controller implemented for the aluminium specimens with D, = 10 mm diameter under

load control.

Increasing the derivative gain at high frequency exaggerates signal noise. The
resonance in the actuator and the load frame affect the performance of the materials testing
machine badly. Especially, under load control the mass attached to the load cell moves
with any frame resonance. As a result of this, the measured load wiil be different from the
actual load which is imposed on the specimen. In addition, the detected inertia force
reduces stability of the machine. In fact, derivative action actually makes the resonance
worse and in this condition using P+I control can be a better option.

The P+ controller strategy is implemented to reduce steady-state errors to zero.

The second order plant roots are placed at s =-229844 and s, =--87.016. The
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corresponding first order dominant root is then assigned to s = --11 rad/s, corresponding a
step-response settling time of about 0.35 s. This design is summarised in the root’s loci
plot of Fig. 6.14, where the parameter along the loci is &£ = 2900 k,. To get a reasonably
damped response, the controller zero is placed at:

5= —ic'% =-12 rad/s
k

4
Thus, suitable values of the integral and proportional gains are k; = 24, k, = 2. The P+l
controller is implemented in a discrete time (ZOHDE) form, with the gains as &£, =2 and k;

= 24, thus
(k) = u(k — 1)+ k (k) = (k, ~ kA, (£ =1)
x, (k) = r(k) - p(k)
where u(k) is the current control signal, x.(k) the current tracking error between reference

and plant output signal, y(k) the current measured load signal which is applied on

specimens and A is the sampling interval.

100} -
50 Nori-dominan roof at =-22.9844
) s=-83.016 Zero af s=-12
Imaginary
AXiS 0 D - N, ¥ - s R SR, 7 25 S  (REREEEERESEL LTS AREEEE S LS E S -
Dominant root at s=-11
50}k i
-100} .
T . L ’ ¥ ; ’ ] 1 1 1
-150 -100 -5p 0 50 100 150
Real Axis

Fig. 6.14: Loci of roots for P+1 control with &; /k, = 12

Given the desired closed-loop settling time of 0.35 s, a reasonable choice of A was

A <035/10 = 35 ms. In fact, the actual choice was A = 20 ms.
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6.11.2 - The MCS Control

For the MCS case, the plant transfer function is not required by the control
algorithm. Details of the MCS algorithm, including stability proofs, have been presented in
[6], [7] and Chapter 4. As mentioned before, the aluminium specimens with ¢10 mm used
in this set of tests under the MCS load control. Firstly, an estimate is made of the nominal
plant order, and order of the MCS matches this figure.

- In this case the ESH material testing machine has second order plant dynamics,
therefore a second-order MCS formulation would normally be necessary. The MCS
control was implemented in a simplified reduced first order form. The fact that the plant
was higher order than the MCS algorithm indicates that the MCS control possesses a
degree of robustness to mismatches in orders. In Particular, relatively low order MCS
controllers can be very effective in the control of higher order plants. First order MCS

control equation is summarised below, in discrete time scalar form:

u(k) = K(k)x(k) + K, (k)r(k) (6.23)
K(k)=K(k-1)+fyx" (k) - oy, (k-Dx" (k-1) (6.24)
K (kK)=K,(k-1)+py,r"(k)-oy,(k-Dr"(k-1) (6.25)
y.{k)=C,x,(k) (6.26)
x, (k) = x,, (k) - x(¥) | (6.27)

where o= —-caA and A is the sampling interval of the discrete time process.‘The
referenée mode! parameters are chosen in order to have stable plant state trajectories x,
which is guaranteed to follow reference model state trajectories x,, closely. The first order
MCS reference model is

x,(t) = 4,x(t)+ B,r(1) (6.28)
where A, =-4/¢t, and B, =4/1,

Equation (6.28) can be written as

X, () =(-4/1)x(6)+ (471 )(r) | (6.29)
The hyperstable condition is guaranteed if:
C,=4Pr (6.30)

In this equation

175




71
and P is the positive definite solution to the Lyapunov equation

PA +AP=-0, 0>0 (6.31)
and the ‘weighting’ matrix  in the Lyapunov equation , which was chosen as Q = [1].
The values of adaptive weights were a = 0.01 and £ = 0.001. The first order reference

model parameters are:
A =-4/t =-114286,B =4/t =114286and C, =1 /8 =0.0438

6.12 - COMPARATIVE TESTS

6.12.1 - Step Response Tests

The conventional P+I controller was implemented on the plant. In this case the
reference signal was a square wave of amplitude 1.5 V and frequency 0.25 Hz. The
controller gains was &£, = 2 and k; = 24. The P+I controller yielded the steady state
responses shown in Figs. 6.15. There is good correspondence between the desired and
actual responses indicating that the second order plant model from system identification
tests is well founded and the P+1 control is well implemented. The load was applied on
specimens gradually (static loading).

.With the initial conditions on the adaptive gains set to zero, the adaptive rates are
chosen empirically; values found to be suitable in this case are o = 0.01 and £ = 0.001, the
values having been deduced as providing a good compromise between the rate of adaption
and noise propagation. The MCS yielded the steady-state responses shown in Fig, 6.16a
and MCS controller gains and input signal shown in Fig. 6.16b and c¢, indicating that the
MCS control performs better than P+, without the necessity for system identification and
controller synthesis. The initial adaptive stage cf the MCS controller is shown in Fig.

6.17a, b and c, the adaption and response tracking are seen to be both rapid and accurate.
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Fig. 6.15: P+ step response, supply pressure 13.8 MPa, load 7.5 kN.
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Fig. 6.16: MCS step response, supply pressure 13.8 MPa, loéd 7.5 kN.
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Fig. 6.17: MCS step response, supply 13.8 MPa, load 7.5 kN, initial adaption
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Discussions

Both controller are implemented by using an aluminium specimen with
¢ 10 mm. In the case of step response tests there is a spike at the beginning of each step
changes, then the steady-state error becomes zero. The spikes occurs due to the nonlinear
relationship between the flow and the position of the actuator and sudden changes in the
amplitude of the input signal. In the case of P+] controller spikés are higher than the MCS
controller indicating that the MCS controller can cope better with changes in the mput
signal and the plant parameters than the P+I controller as it can be seen in Fig. 6.16. The
steady-state error driven to zero by integrai gain. Initial MC.S coﬁtrol }esu!ts are shown in

Fig. 6.17, the plant response under load controller shown in Fig. 6.17a, spikes get smaller
after 14 seconds, which is more suitable in materials testing. At the beginning the adaptive
gains are zero as shown in Fig. 6.17b and they gradually increased. After approximately 14
seconds the gains did not increase much indicating that the controller preserves the

stability of the system.

6.12.2 - Sinusoidal Tests

In this case supply pressure was set at 13.8 MPa during the tests. The reference
signal was chosen as a sine wave of frequency 0.25 Hz and amplitude of 2 V (I0kN). A
reasonable choice of A was A =20 ms.

The resulting transient response for P+I control is shown in Fig. 6.18. There is a
good correspondencé between the desired and actual responses. The reference model
shown as ‘xm’, togéther with the actual response ‘x’. Plots of corresponding MCS results
are shown in Fig. 6.19a. In this diagram the desired response shown as ‘xm’ together with
the actual response ‘x”. MCS controller gains and input signai shown in Fig. 6.19b and c.

In order to show the effectiveness of MCS during the initial adaption phase, the
supply pressure kept at 13.8 M?a and the amplitude of the reference signal was
2 V (10 kN). Initially, only small control signal and gain values generated by the
controller, after 2 s, the adaption and response tracking are seen to be both rapid and

accurate, see Figs. 6.20a, b and c.

180




1 1
2 4 6 8 10 12 14
Time (Seconds)

(a) The plant and reference model outputs

16

18

20

]
2 4 6 8 10 12 14
Time (Seconds)

(b) Control signal

Fig. 6.18: P+ transient response, supply pressﬁrc 13.8 MPa, load 10 kN.
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Fig. 6.19: MCS transient response, supply pressure 13.8 MPa, load 10 kN.
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Discussions

In the case sinusoidal tests the plant responses are smoother than step response
tests due to gradual changes in the sinusoidal input signal for both controllers. The steady-
state error in the case of the MCS controller is smaller than the P+I controller as shown in
Figs. 6.18 and 6.19. It is observed that small plant parameter variations occurs when the
amplitude of the input signal is changed. Initial sinusoidal MCS results shown in Fig. 6.20,
the controller gains started from zero, rapidly adapt to the changes in the plant and

environment, After 16 seconds gains are settle down and did not increased much

afterwards as shown in Fig. 6.20b.

6.13 - CONCLUSIONS

In this chapter the Minimal Controller Synthesis (MCS) algorithm has been
applied to the ESH Servo-hydraulic Materials testing machine. The MCS algorithm was
applied in Single Input Single Output (SISO) form. For nominal operating conditions
(supply pressure 13.8 MPa, load 7.5 kN), the second order transfer function model was
seen to be an approprié.te choice, and this model was used to design a P+1 controlier for
the plant. Proportional Plus Integral controller (P+I) matched the désign expectations, The
MCS algorithm was implemented on the servo-hydraulic rig, and the closed-lobp results
compared with those produced by P+I control under load control. The MCS controller
performed better than a well designed P+1, despite MCS requiring no plant dynamic
parameters. Proportional Plus Integral controller design requires plant system
identification, like other conventional controllers. The MCS algorithm was implemented n
a simplified reduced-order form. The servo-hydraulic rig has a second-order transfer
function and the MCS reference model was first-order. The plant was higher order than
the MCS controller. This indicates that MCS appears to be quite insensitive to such
mismatches. The MCS algorithm can be recommended as a robust controller for the
servohydraulic materials tésting machine. The algorithm copes with parameter variatiohs
in specimens (small plant parameters variation introduced when the amplitude of the input

signal is changed) and in the test machine itself (nonlinear effects of the hydraulic fluids
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and servovalve dynamics). ‘Bumpless transfer’ between load, strain and position control
can be accommodated with ease, and simultaneous MCS control of temperature cycles is
perfectly viable [8].

Adaptive control is suitable for use with materials testing machines which have to
test a variety of specimen of very different, and sometimes non-linear, stiffness.
Additionally, during the fatigue tests, the stiffness of the specimen decreases as fatigue
cracks propagate and a controller which can continuously adapt to the changing specimen
characteristics has obvious advantages. The MCS control can be recommended for the
materials testing machines as a robust controller against the effects of plant parameter
variations, external disturbances and plant nonlinearities (which are high pressure and
temperature changes, aeration and cavitation problems) on closed-loop performances. This

feature of the MCS control will be detailed in the following chapter (Chapter 7).
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CHAPTER 7

COMPARATIVE ROBUSTNESS
TESTS AND STRAIN MEASUREMENT

UNDER MCS LOAD CONTROL

7.1 - INTRODUCTION

The purpose of this chapter is to show the robustness of the MCS control, in the
presence of plant parameters changes, plant nonlinearities, external disturbances and
unmodelled dynamics, under load control. The results of the MCS control will be
compared with a conventional, linear P+I load control.

The MCS and P+I control algorithms have been implemented on the ESH
materials testing machine as detailed in Chapter 6. Tt has been shown that the MCS control
outperformed a well designed P+ control. In this chapter, the robustness of the MCS
control will be investigated in the presence of plant parameter changes due to use of
different types of specimen. The chapter begins with a linear description of the plant under
load control. Then, the results of the MCS and P+I control algorithms on the ESH
materials testing machine are presented. During the tests presented in this chapter, four
different specimens in terms of materials and diameters have been used. It is shown that
the MCS control performed better than P+I control algorithm, in both elastic and elastic-
plastic region, despite MCS requiring no plant dynamic parameters.

The MCS control algorithm can be recommended as a robust controller for servo
hydraulic materials testing machine. The algorithm coped with various specimens, which

have different materials and diameters under equivalent implementation condition (same
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controller gains, reference signal and reference modet). It is shown that the MCS algorithm
outperforms a well-designed conventional controller, especially when the plant is subjected
to gross parameter changes and unmodelled dynamics. Finally, the main conclusions of this

chapter are listed.

7.2 - PROCESS DYNAMICS IN CLOSED-LOOP MATERIALS
TESTING AND MODELLING UNDER L.OAD CONTROL

Closed-loop control accuracy is crucial in materials testing applications due to the
fact that even smaller overshoots or undershoots can cause undesirable result in tension or
compression tests therefore, controller tuning is also important in such tests. The suitable
controller parameter values for any one test depend on the nature of the test, the specimen
characteristics and the dynamics of the materials testing machine. Normally, these values
vary from test to test. Manual tuning of the controller parameters can be a serious problem
especialiy many controller parameters need to be reset during the operation of the
machine. For that reason it is more desirable to use digital controller in material testing
applications.

The controller parameters needs to adjusted according to the changes in the plant
parameters for satisfactory plant output response. The plant dynamics changes enormously
during materials testing due to the changes in specimens and the machine characteristics.
Using adaptive control in this field have many advantages, such as adaptivity to the
changes in the working condition. Users do not redesign the controller for new condition

since the controller itself doing this task automatically.

7.3 - USING THE MCS LOAD CONTROL IN THE CASE OF STRAIN
MEASUREMENT

7.3.1 - Strain Measurement by Contacting Specimens

In general, strain measurement techniques uses direct contact with the test

specimen surface which requires high degree of skill and patience by the users [1]. Surface
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preparation of the testpiece is particularly important for the accuracy of the test. In tension
or compression, strain is defined as the elongation per unit of the gauge length, and
described as follows
— 1— lO

o

0

(7.1)

£

where [ is the gauge length at any time and / is the original gauge length. This expression
is satisfactory for elastic strains since /-, is small. For plastic deformation the gauge length

will change considerably, therefore using natural strain, £, is more suitable in such cases

which is given below

g = lni (7.2)
n I
' £, = ln(é + 1)
Equations (7.1) and (7.2) give similar results for strains less than 0.1. If strain is below this
value, it is reasonable to use the first equation to measure strain. For larger strains, and
depending on the application, it is more appropriate to use (7.2) when converting output
signals. There are many contact strain measuremeht techniques which are currently in use,
some of this methods are given as follows: capacitance strain gauge; foil strain gauge; the
electrical, wire resistance strain gauge, servo controlled strain gauge. Transducers are

converted displacement into an electrical voltage output and they have been widely used in

the case of strain measurement.

7.3.2 - The LVDT Extensometer (5§ mm)

Linear Variable Differential Transformer (LVDT) device, with good linearity and
low cost they have become very common in creep laboratories. Under load control, the
device produces an error when the direction of the loading changes.The internal spring of
the LVDT is the source of this error. Additionally, LVDT devices are also sensitive to
ambient changes and the presence of magnetic fields. The long standing LVDT’s are best
used in their more traditional role in the low temperatures (below 250 °C), but they are not

effective at high temperatures.

189




WA

AR S e A Y e e L 1y R R e LT e S T

255 m 5 mm
39 mm |
* F
39 mm
5 mm
M3
T
5 mm
3I9mm /) ]
T Neck 129 mm o
5 mm

Fig 7.1: The top and bottom plates of the LVDT extensometer.

The LVDT extensometer, which is presented in this section, has been made in the
Mechanical Engineering Department Workshop at Bristol. The extensometer consists of
two parallel rectangular plates each of width 39 mm and height 5 mm and two LVDT’s
which are placed either side of the bottom plate, shown in Fig. 7.1. The bottom plate has
two holes with ¢8 mm either side of each corner which is 5 mm away from the plate
edges, so that two LVDT’s can be placed in these holes and fixed by two M3 screws at
zero position. The two LVDT’s have a range of 5 mm which corresponds to +10 V. Both
plates have a hole in the middle of them with ¢2355 mm which will help to drag these
plates on the specimens. Two plates are fixed in the middle of the specimens with ~15 mm
gauge length. In order to get fixed gauge length two collets had been used during the

installation of the plates on the specimens, which have 10 mm height. The specimens are
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made of aluminium (¢ =150 MPa and Young’s modulus is £ = 72 GPa), and steel

(o =320 MPa and Young’s modulus is £ = 210 GPa), specimens with D, = ¢10 mm,

shown in Fig 7.2.

Rad 25 Rad 25

5 mml, 22 mm 22 mm M5 m

@2535 $2535
mm mm

120 mm

Fig. 7.2: The aluminium and steel specimen with ¢10 mm.

The collets made installation easy, by providing complete support to the
specimens, and preventing the slip of the plates and the specimens, therefore it made
possible to have predetermined fixed gauge length. Contact between the plates and the
specimens is made by three M3 screws, for this reason, three M3 tap are located on the

neck of the to.p and bottom plates, as shown in Fig. 7.3.

Fig .7.3: The test specimen and extensiometer
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All together, there are 6 M3 taps located as 120° from each other on the neck of
the top and bottom plates, to provide good contact between the specimens and the plates.
The structure of the extensometery is rather simple and it is designed for only room
temperature. Alignment and bonding of the strain gauge require a high degree of skill and
the process of installing a gauge is time consuming. Afier fixing the extensometer on the
specimens, the whole construction was loaded to the ESH materials testing machine under

MCS load control, as shown in Fig. 7.4.

Fig. 7.4: Test specimen under MCS load control

7.3.3 - Implementation of the MCS Control

The MCS control was implemented in two degrees of freedom form, there was
no control action in the second degree (strain) of the controller. In faci, this
implementation is only for controlling the load signal. The strain signal is not controlled.
Therefore it can be treated as SISO MCS. While the specimen is controlled under MCS
load control the strain signal is read and logged by the controller. Thus, the second degree
of the control used as measurement channel of the strain signal.

Controller hardware consisted of a 486 PC machine equipped with 12-bit D/A

and A/D converters. In the case of the aluminium alloy specimens with D, = ¢10 mm, the

reference r was chosen as a sine wave of frequency 0.4 Hz, and amplitude 2 V. This

amplitude corresponds to the elastic region (o, =150 MPa) for the aluminium specimens.

The desired settling time was £, = 0.2 s, a reasonable choice of A was A =10ms. The

adaptive rates are chosen empirically, the values are « = 01 and B =001. The stiffness

diagram for the aluminium specimens in elastic region is shown in Fig. 7.5a, where & is the
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stiffness of the specimen. The control input and MCS gains ate shown in Figs. 7.5b and ¢.
In the elastic region, the modulus of elasticity of the specimens can be computed from
Hooke’s Law (o = E¢). The corresponding, the elasticity modulus and the strain signals
are shown in Figs. 7.5d and e respectively. In the case of perfectly plastic region the
amplitude of the reference signal was 2.7 V (13.5 kN). The stiffness of the alummium alloy
specimens in plastic region is shown in Fig. 7.6a, together with control signal, gains and
strain signal in Figs. 7.6b, ¢ and d respectively. Following the stiffness signal, the steel
specimens with D, = ¢7 mm produced in elastic region as shown in Fig. 7.7a. In this case,
the reference signal was a sine wave of amplitude 2.5 V and frequency 0.4 Hz. The desired
settling time was 7, = 0.4 s, a suitable choice of A was A =20 ms. The adaptive rates
were a = 0.01 and #= 0.001. Corresponding control signal, MCS gains, the modulus of
elasticity and strain signals are shown in Figs. 7.7b, ¢, d and e. The stiffness of the steel

specimens in elastic-plastic region is shown in Fig. 7 8a, together with the control input,

. MCS gains, and strain signals are shown in Fig 7.8b, c, and d. In this case the amplitude of

the reference signal was 3.4 V. The standard yielding point for the aluminium alloy given

as o, =120-200 MPa. The corresponding yielding point measured by MCS is
o, =150 MPa (see in Fig. 7.6a). In the case of the steel specimens the standard yielding |
point is given as o, =300-670 MPa. Following the yielding point, MCS produced,
o, =320 MPa as shown in Fig. 7.8a. The results produced by the MCS contro! are in the

range of the actual values, indicating that the MCS control can be used in strain and
stiffness measurement very effectively. The results confirmed that the robustness of the

MCS contro! in the presence of unmodelled dynamics as proven in Chapter 4. |
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7.4 - COMPARATIVE ROBUSTNESS TESTS

Both P+I and MCS contro! have been implemented on the ESH material testing

machine in Chapter 6. In this case, the aluminium specimens with ¢ 10 mm taken as the

standard tests specimens, then both P41 and the MCS controllers implemented for the

standard test condition under load control.

7.4.1 - Tests Specimens

The specimens which are used in comparative elastic and elastic-plastic step

response tests shown in Figs. 7.9-7.10.

Rad 25 mm Rad 25 mm
15 mmy, 22 mm 92 mm 22 mm ;15 mm,
2535 mL _____________________________ Lo l #2535 1
#1715 mm o mm PL75 am
Rad 25 mm Rad 25 mm
120 mm .

Fig. 7.9: The aluminium and steel specimens with ¢10 mm.

All together four different specimens used in this set of tests which are given as
below:
1 - Aluminium specimens

1.1 - The specimens with D, = ¢10 mm
1.2 - The specimens with D, = ¢7 mm

2 - Steel specimens '

2.1 - The specimens with D, = ¢10 mm

2.2 - The specimens with D, = ¢7 mm
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Fig 7.10: The steel and aluminium specimen with ¢7 mm.

7.4.2 - Stiffness of Specimens

In the case of axially loaded test specimen the stiffness is defined in the same
manner as axially loaded bar (in Fig. 6.3), that is, the stiffness £ is the force required to
produce a unit elongation. The elongation of the axially loaded specimen can written as:

s=tL (7.3)
EA‘P

where P is the axial force, L is the unloaded length of the specimen, E is the elasticity

modulus and 4, is the cross-sectional area of the specimen, which is given as:

aD?

A4, = 7 (7.4)
where D is diameter of the specimen. The stiffness of the specimen can be written as
below:

: - EAP
L
or from Equation: (7.4)
EnD?
k= L | (7.5)

In table 7.1 E,, is the modulus of elasticity of the aluminium alloy specimens, £, is the
modulus of elasticity of the steel specimens, k., is the stiffness of aluminium specimens

with D, = ¢10 mm, k., is the stiffness of aluminium specimens with D, = ¢7 mm, &, is
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k.08 Y 65.713 less than k..,
ko is % 30.0201 less than k.,

k.0 i8 % 51 bigger than k.

the stiffness of steel specimens with D, =¢10 mm and k, is the stiffness of steel
specimens with D, = ¢7 mm. From table 7.1, four different specimens stiffness differences

were computed in terms of percentage, which are shown below:

The Specimens

The Specimens

4L
k,, = 137440 N/mm

with ¢10 mm with ¢7 mm
Aluminium
A“Oy _ E“alyrDl2 k - Ea! ”D?,z
ald = al =
4L 4L
k,,, =47124 N/mm k,; =23091 N/mm
EN24T (Steel)

k= E aD}
4L
k., = 67348 N/mm

LT, ST 2 e S

Table 7.1: Stiffness of specimens

7.4.3 - The First Set of Tests (Elastic Region)

In the case of first set of tests (elastic step response tests), both the MCS and P+I
controllers performed in the elastic region. The first set of tests consisted of square wave
reference signal, of frequency 0.25 Hz and amplitude equivalent to 0.9 V, which was
correspond to 4.5 kN (applied load on specimens). This amplitude corresponds to
dynamics in elastic region for all specimens, therefore first set of the tests can be called as
elastic step response tests. It was required that the P+I and MCS controllers yield critically
damped closed-loop responses which settled in 0.35 s. In all cases supply pressure kept on
13.8 MPa during the tests.

For the first set of tests, the steel and aluminium specimens with a cylindrical test

section is used and the test specimens deformation restricted to the elastic region.
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Fig. 7.11: P+I control step response, the aluminium specimens with #10 mm
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Fig. 7.12: P+ control step response, the aluminium specimens with ¢7 mm
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Fig. 7.13: P+] control step response, the steel specimens with $10 mm
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Fig. 7.14: P+1 control step response, the steel specimens with ¢7 mm
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Fig. 7.15: The responses of the MCS control, the aluminium specimens with #10 mm

209



o

e |

Fae

LA L Ve

Load (Volts)

1 1

12 14 16 18 20
Time (Seconds)

2 4 6 8 10

(a) MCS control step response, reference and output signals

Volts
o

N
. 1 | I
20

Volts

I

i i
10 12 14 16 18
Time (Seconds)

i

1 1 1 i
4 - 6 8 10 12 14 16 18
Time (Seconds)

20

(c) Control signal

Fig. 7.16: The responses of the MCS control, the aluminium specimens with ¢7 mm
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Fig. 7.17: The responses of the MCS control, the steel specimens with #10 mm
211




Load (Voits)

1 1 1 1

-2 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (Seconds)
(a) MCS control step response, reference and output signals
2 T [ T 1 I | 1 T I
Kr
or ]
_ K
Al . |
2 1 1 t 1 i | 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (Seconds)
{b) MCS gains
4 A T ] 1 1 T L] | 1 1

- Volts

1 1
0 2 -4 6 8 10 12 14 16

Time {Seconds)

{c) Control signal

Fig. 7.18: The responses of the MCS control, the steel specimens with ¢7 mm
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Fig. 7.20: ISE criteria MCS responses, supply pressure 13.8 MPa, elastic region.
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7.4.3.1 - The Results and Discussions of the _First Set of
Tests

" The MCS and P+I controller are implemented in Chaptér 6 by using an aluminium
specimens with 10 mm diameter. The relevant designs are shown in Table 7.3 and Table

7.4. Under the nominal condition (the aluminium specimens with $10 mm) P+ load

control responses are shown in Fig. 7.1la, together with control signal shown in
Fig. 7.11b. The plant responded rather roughly to the changes in the amplitude of the input
signal. There is a good correspondence between desired and actual responses, apart from
small overshoots and undershoots beginning of each period due to the nonlinear
relationship between the flow and the position in the servovalve and the sudden changes in
the amplitude of the input signal. This indicates that the second order mode! and also P+I
synthesis are well designed. The responses of the MCS contro! in the nominal case is
shown in Fig. 7.15a, there is a small spikes in comparison with P+] control at the begining
of each step changes. The responses were satisfactory. The MCS gains are shown in
Fig. 7l.15b, they are steady and do not vary much which is good indication of the stability
of the controller. |

Except the aluminium specimens with #10 mm, other specimens with different
diameters or different materials are considered away than the nominal condition. Same
controller gains and input signals are used for all specimens. In elastic region all specimens
are tested under 4.5 kN force. The MCS control in the case of steel specimens with $10
| mm, ¢7 mm are shown in Fig. 7.17 and 7.18 respectively. The error is slightly bigger due
to changes in the specimens characteristics. The MCS control result in the case of the
aluminium specimen§ with ¢7 mm is shown in Fig. 7.16. The error is smaller than the
nominal case. The corresponding P+I controller responses in the case of aluminium
specimens with ¢7 mm, steel specimens with #10 mm and ¢7 mm are shown in Fig. 7.12,
7.13 and 7.14 respectively. In general, the steady-state error in the case of the MCS
control is smaller than the P+I control, indicating that the MCS control can adapt itself to
the changes in the specimens stiffness in elastic region better than the P+1 controller.

In the elastic region the slow part of the plant is dominant, due to using small

amplitude (comparatively small load). In the case of MCS the steady-state error can be
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made zero using higher adaptive gains or increasing the controller amplitudes. The integral
square error criterion is used to quantify the tracking performance of each of the controller
strategies which were applied to the aluminium and steel specimens with different stiffness
and yielding stress. In elastic region, the MCS controller performed significantly better
than a conventional, P+1 control, in the case of both the aluminium and steel specimens,
the fact most noticeably demonstrated by the ISE plots in Figs. 7.19 and 7.20.

Away from nominal operation, the linear plant model parameters changed.
Therefore, the effects of nonlinearity and noise due to unmodelled dynamics which
appeared in the plant dynamics, hence in the plant responses. In Figs 7.19 and 7.20, the
MCS control produced a smaller tracking ISE in both the nominal condition and away than

the nominal operating condition (in the case of the steel specimens with ¢7 —10 mm and
the aluminium specimens with ¢7 mm). Another important point was that tracking ISE of

the steel specimens was larger than those in the aluminium specimens in the case of both

controllers, due to significant changes in the plant parameters.

7 4.4 - The Second Set of Tests (Elastic-Plastic Region)

The second set of tests is called as elastic-plastic step response tests. In this set of
tests specimens were tested in elastic-plastic region. Firstly, it is necessary to know the
yielding stress of the EN24T and aluminium alloy specimens, then to figure out'the loads
which can be applied on each specimen fn plastic region.

For the steel specimens, beyond proportional point, the proportionality between
stress and strain no longer exists. Beyond the proportional limit, the strain begins fo
increase more rapidly, for each increment in the stress until yielding point, beginning at this
point, the steel starts to yield. After the proportional limit, the steel behaves perfectly
plastic. Therefore, for second set of the tests in the case of st;:el specimens it is crucial that
the test is being conducted beyond the proportional limit, ideally in the perfectly plastic
region. |

The steel specimens are made of EN24T, a high quality alloy steel that can
provide in the hardened and tempered condition to a tensile range of 87-102 kg/mm’.

Content of the material is: % 0.36 - 0.44 carbon, % 0.1 - 0.35 silicon, % 0.45 - 0.7
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manganese, % 1.3 - 1.70 nickel, %1 - 1.40 chromium, % 0.2 - 0.35 molybdenum. The
steel exhibits good ductility and shock resisting properties combined with resistance to

wear A stress- strain tests was carried out using steel specimens with ¢7 mm under the

MCS control. From a stress-strain test, it was observed that the proportional limit of the

specimens is ~ 300 MPa and yielding stress is o, = 320 MPa shown in Fig. 7.8a. In this

diagram £ is the stiffness of the specimens. This test consisted of sine wave reference signal
of frequency 0.4 Hz, and amplitude equivalent to 3.4 V. The settling time was 7, = 0.4 s,
and reasonable choice of A was A =20 ms. Empirically chosen adaptive rates are
@ =001 and f=0001 The elasticity modulus of the specimens is £ = 210 GPa.
Therefore, 2.2 V (11 kN) and 5.2 V (26 kN) of amplitudes corresponds to loads in the
plastic region for steel specimens with ¢7 mm and ¢10 mm respectively.

The aluminium test specimens are made of an aluminium alloy which has the

yielding stress of o, =140—150 MPa and Young’s modulus of £ = 72 GPa. Many

aluminium alloys do not have clearly definable yielding point, a typical stress-strain
diagram is shown in Fig. 6.4. In this diagram, a line drawn on the stress-strain diagram
parallel to the initial linear part of the curve (Hooke’s law holds and material is elastic in
this region) but offset by some standard amount of strain curve. The intersection of the
offset line and the stress-strain curve gives the yield stress. For aluminium the offset yield
stress is slightly above the proportional limit.

Under a MCS stress-strain test, it was found that the offset yielding stress of

aluminium specimens with ¢10 mm is ¢, =140~150 MPa shown in Fig. 7.6a. In this

test, the demand signal was sine wave of amplitude 2.5 V (12.5 kN) and frequency 0.4 Hz.
Reasonable choice of settling time was #, = 0.2 s and sampling interval A =10 ms. The
adaptive rates are chosen empirically; values found to be suitable in this case arec = 0.1
and f =001, In this diagram k is the stiffness of the specimens. In the second set of tests,
1.2 V (6 kN) and 2.2 V (11 kN) amplitudes are applied on the aluminium specimens with

¢7 mm and $10 mm respectively, which were beyond the proportional limit. Therefore,

the tests were conducted in the perfectly plastic region.
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The Specimens
with $10 mm

The specimens
with ¢7 mm

Aluminium o, =150 MPa o,, ~150 MPa
Alloy P, =11 kN P, =6 kN

P =22V P,=12V
EN24T (Steel) o, ~320 MPa o, =320 MPa

P, =26 kN P, =12 kN

P, =52V P =24V

Table 7.2: Applied load on specimens in elastic-plastic region

Reference model signal in all cases were equivalent to critically damped response
to a square wave of frequency 0.4 Hz. The settling time of the reference model, following
a constant demand, was £, = 0.35 s with zero error in steady state. The controller gains of
each controller strategy were kept same as in the first set of tests, which were o = 001
and = 0001 in the case of MCS. Similarly, &, = 2 and k; = 24 for P41 control. This was’
the standard test signal applied to all cases. In the case of the first set of tests amplitude of
controller kept constant at 0.9 V (4.5 kN) in the case of four specimens.

Each specimen needs different load to reach its plastic region. Therefore, in the
second set of tests amplitude of the controller was varied due to use of two different
materials which have different yielding stresses and stiffness. Clearly, mechanical and
chemical properties of aluminium alloy and EN24T steel are considerably different from
each other. In addition, using the same material two different specimens made by changing
cross-sectional area which were 4, = 78.5398 mm? and 4, = 38.4845 mm?. Overall, four
different specimens in terms of materials and diameters; therefore, four different
amplitudes which correspond to applri_ed load on specimens are used in this set of tests.
These amplitudes are as follows: 1.2 V for the aluminium specimens withg¢7 mm, 22 V
for the aluminium specimens with ¢10 mm, 2.4 V for the steel specimens with ¢7 mm,

and 5.2 V for the steel specimens with $10 mm. Applied load for each specimen together

with yielding stress of matetials is shown in Table 7.2 .
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The Steel The Steel The Aluminium | The Aluminium

Specimens Specimens Specimens Specimens

with ¢10mm | with 7 mm with 10 mm with ¢7mm

h=2k=24, |k=2,k=24, |K=2,kk=24, |k=2,k=24,

amp=09V, amp=0.9YV, amp=09V, = [amp=09YV,
Elastic frq=0.4 Hz, frq=0.4 Hz, frq = 0.4 Hz, frq = 0.4 Hz,
Region t, =0.35s, t, =035s, t,=035s, t, =035s,

A =20 ms A =20 ms A=20 ms A =20 ms

k=2 k=24, | k=2 k=24, |L=2,k=24, |k =2 k=24,

amp=52V, amp =24V, amp=2.2V, amp=12V,
Elastic-Plastic | frq = 0.4 Hz, frq = 0.4 Hz, frq = 0.4 Hz, frq = 0.4 Hz,
Region t, =035s, t, =035s, t., =035s, t. =0.35s,

A =20 ms A =20 ms A =20 ms A =20 ms

Table 7.3: P+] controller gains and reference signal variables.

Steel Steel Aluminium Aluminium

Specimens Specimens Specimens Specimens

with #10mm | with¢7mm withglOmm | withg7 mm

a =001, a =001, a =001, a =001,

£ =0001, p=0001, f=0001, B =0001,
Elastic amp=09V, |amp=09V, [amp=09V, |Jamp=09YV,
Region frq=04Hz, |frq=04Hz, |fiq=04Hz, |frq=04Hz

t, =035s, t, =035s, t, =035s, t, =035s,

A =20 ms A =20 ms A=20 ms A =20 ms

a =001, a =001, a=001, a =001,

£ =0.001, £ =0001, J=0001, £ =0001,
Elastic-Plastic | amp=52V, |[amp=24V, lamp=22V, |amp=12V,
Region frq=04Hz, |frq=04Hz, |fiq=04Hz, |frq=04Hz,

t, =035s, t, =035s, t, =035s, t, =035s,

A =20 ms A =20 ms A =20 ms

A =20 ms

Table 7.4: MCS control gains and reference signal vanables.
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Fig. 7.21: The responses of P+[ control, the aluminium specimens with ¢10 mm
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Fig. 7.22: The responses of P+1 control, the aluminium specimens with ¢7 mm
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Fig 7.23: The responses of P+I control, the steel specimen with ¢10 mm
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Fig. 7.24: The responses of P+I control, the sicel specimens with $7 mm
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Fig. 7.25: The responses of the MCS control, the aluminium specimens with ¢10 mm
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Fig. 7.26: The responses of the MCS control, the aluminium specimens with ¢7 mm
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Fig. 7.27: The responses of the MCS control, the stecl specimens with ¢10 mm
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Fig. 7.28: The responses of the MCS control, the steel specimens with $7 mm
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7.4.4.1 - The Resuits and Discussions of the Second Set
of Tests

In the first set of tests the amplitude of the tests was limited as 0.9 V (4.5 kN) for
all specimens, therefore the changes in the plant parameters was limited as well. In the case
of second set of tests, the changes in the plant parameters are more significant due to the
fact that each specimen was tested beyond its proportional limits (plastic region), therefore
the dynamics of the specimens had more effect in the plant dynamics.

Following the step reference signals a P+1 controller produced the set of results in

the case of aluminium specimens with $10 and ¢7 mm and steel specimens with ¢10 mm
and #7 mm are shown in Figs. 7.21, 7.22, 7.23 and 7.24 respectively. The results showed

that manual tuning of controller gains, &, and &; are crucial in the case of P41 control in
order to get noise free, zero steady-state plant output. In all cases the P+I control give
stable responses. The steady-state errors and spikes are bigger than the MCS contral for
all specimens, otherwise the controller is stable.

The results presented here show that effective control in material testing can be
achieved using the MCS control. The plant responses are virtually indistinguishable from
the reference model outputs. Therefore, the responses are very satisfactory, shown in
Figs 7.25, 7.26, 7.27 and 7. 28 in the case of aluminium specimens with ¢$10 mm, ¢7 mm
and steel specimens with $10 mm, ¢7 mm. respectively, together with MCS control gains.
The gains are very rapid, subsequently they settle to new levels that are appropriate for the
new applied load on specimens. It is shown that the transient terms are rapid and noise is
not a problem. The corresponding control signals are shown in Figs. 7.25¢-7.28c:
compared with P+1 controller response in Figs. 7.21b-7.24b. The steady-state errors in the
case stee! specimens is bigger than the aluminium’ specimens due the fact that great plant
parameters variations occurs due to use of different materials. In general the MCS control
adapts itself very smoothly to the changes in the plant parameters. The steady-state error
was very small, there was a very small spike at the bottom of the each step. The actuator is
in retract position at the bottom of the each step and the load force pushes the specimen
down beyond the demandzsignal. The bottom grip is not firmly fixed as the top grip due to

the fact that it is attached to the actuator piston therefore, every little movement and the
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nbnlinearities in the actuator causes disturbances in the output signal when the amplitude
of the input signal is negative.

It is shown that, in the case of the steel specimens control signals are
comparatively more noisy than the aluminium specimens, due to relatively large variations
in stiffness. It is observed that control signals were large and noisy in P+I control when
compared with those produced by MCS. o

In the elastic-plastic region the MCS control has outperformed the P+1 controller,
the fact is most clearly demonstrated in the ISE plots, Figs 7.29 and 7.30. As it is shown
the ISE error in the case of the MCS control is far less than the P+I controller for all four

specimens.

7.5 - CONCLUSIONS

This chapter is concerned with comparative implementation studies of the
Minimal Controller Synthesis (MCS) algorithm applied to a material load control problem.
Certainly the MCS responses were superior to those resulting from the implementation of
a conventional proportional plus integral (P+]) fixed gain, linear, controller.

In considering robustness of the MCS control and P+l controller, when
comparing their effectiveness in elastic and elastic-plastic region, it was observed that since
tests are consistent (same controller gains, amplitude, frequency, sampling interval, settling
time) in their nature, the MCS control is more effective at both conditions than P+1
control. Additionally, the MCS control was robust in the presence of parameter changes in
specimens (for example crack growths and modulus of elasticity variation) and in the test
machine itself. |

Parameter changes were introduced due to use of $pecimens with different
diameters and materials in these tests. It was observed that MCS responses were virtually
unaffected, and yet the P+1 responses were significantly effected. A fact was more clearly
demonstrated by the ISE plots in Figs. 7.19 and 7.20 for elastic region and in Figs. 7.29
and 7.30 for elastic-plastic region. In addition, the dynamics of the servovalve and load
inertial and frictional effects have been ignored in all the control systems designs (including

MCS, since the dimension of the reference model state is only 1). Additionally, control
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signal was large and noisy in elastic-plastic region than in elastic region, due to large and
rapid plant parameter variations.

In order to design structures and components using modern engineering materials,
it is essential to have a good understanding of the materials stress and strain
characteristics. Since strain is directly related to a dimensional change, it can be measured
on small specimen. In this case, the accuracy of the measuring device is crucial. It was
shown that the MCS algorithm can be used in strain and stiffness measurements very
effectively.

Furthermore, the MCS control offers the potential of improving the effectiveness
of control. Due to adaptation mechanism the MCS control feedback and feedforward gains
change continuously according to plant parameters change and nonlinearities in the plant.
Similarly, reasonable contro! is achieved by P+I control. However, the latter requires
manual tuning of proportional gain %, and integral gain ; It was observed that control
signal was larger and more noisy in the case of P+I control than MCS.

However, the servovalve stiction has had an effect on the MCS and P+ responses
in elastic region. In the second set of tests the steady-state error is bigger than the first set
of tests due to the larger variations of the specimens characteristics, unmodelled dynamics
and nonlinearieties in the system. The steady-state error is insignificant in the case of the
MCS control, but it was significant in the case of P+I control. Indicating that MCS is a
robust controller in the presence of plant parameter changes, nonlinearities and external
disturbances. Therefore, it is suitable for systems which are workinge under different
operating conditions.

The MCS algorithm was implemented in a simplified reduced first order form.
The nominal plant was of a second order. The fact that the MCS was of lower order than
the plant. Indicating, that MCS appears to be robust and quite insensitive to such
mismatches. '

Since electrohydraulic servomechanisms are widely used for a great variety of
closed loop material testing application, many applications can benefit from MCS control
performance. In particular in all closed loop electrohydraulic load, strain and temperature
cycle tests, the nonlinear aspect of servovalve are significant in high frequency and it can

be handled effectively by the MCS control.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 - INTRODUCTION

Adaptive control has been researched for number of decades. In recent years,
however, consistent levels of system performance have resulted in greater attention being
devoted to it. In this thesis the application of the MCS control in the electrohydraulic field
is presented together with stability analysis.

The main purpose of this chapter is to make final conclusions about the
application of the MCS control in the electrohydraulic field together with robustness
analysis which are explained in detail in previous chapters. Later in this chapter, the
possible improvements and applications of the MCS control including the reduced order
MCS control in the case of electrohydraulic systems will be discussed.

The importance of modelling and simulation of the hydraulic systems is
emphasised in Chapter 2. In this chapter, some modelling methods which are being used in
this field are also discussed. Modelling and simulation of hydraulic systems has many
advantages and it has been successfully used in this field.

The conventional model reduction methods are discussed together with adaptive
model reduction methods in Chapter 3. Various model reduction methods are explained in
this chapter. Subsequently, the servohydraulic actuator plant and the ESH materials testing -
machine transfer functions are reduced by using conventional model reduction methods.
Some of the model reduction methods produced very accurate reduced order models
which are in very close agreement with the response of the nominal plant models.
Although the MCS control does not need plant parameters, these parameters are still

needed in the case of comparative studies.
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The robustness of the MCS control in the presence unmodelled dynamics is
proven by either Popov’s hyperstability or Lyapunov’s function depending on the nature of
the disturbances due to the unmodelled dynamics in Chapter 4. Later in this chapter, the
stability of the electrohydraulic actuator plant and ESH material testing machine in the
presence of unmodelled dynamics are proven using both methods.

The MCS control is implemented in a reduced order form in the case of position
control of the electrohydraulic actuator plant in Chapter 5. The plant had a nominal third
order model and the MCS control is implemented in reduced second order form. The MCS
control is implefnented one degree lower than the nominal plant model. Very satisfactory
results are generated. The results of the MCS control responses are compared with those
produced using P+DFB control.

Another application of the reduced order MCS control in the servohydraulic field
was on the ESH material testing machine in this thesis (Chapter 6). In this case, the plant
had a second order nominal plant model and the MCS control is implemented in first order
form. Again, the MCS control produced very satisfactory results compared with results
which are generated from P+I control. It is shown that the MCS is robust in the presence
of plant parameters changes, nonlinearities, external disturbances and changes in the
specimens.

The MCS control is used in the case of strain measurement and satisfactory
results are derived in Chapter 7. Both aluminium alloys and EN24 steel specimens are used
and specimens are controlled under cyclic MCS load control. These test results were very
useful to find the yielding point of each material. Although each material has a known
yielding point which is given by the manufacturing company but those numbers are not
accurate enough, their values being higher than those obtained during testing. The exact
yielding point is important, especially during the second set of tests where the elastic

boundary is found to ensure that the tests are carried out in elastic-plastic region.

8.2 - ADAPTIVE CONTROL

Important theoretical results on stability and structure of the adaptive controller

have been established. Much theoretical work still remains to be done. Laboratory
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experiments and industrial applications have contributed to a better understanding of the
practical aspects of adaptive control. In some cases, an abitrary small disturbance can
destabilise an adaptive system which is otherwise proved to be bounded-input bounded-
state (BIBS) stable (Exponential stability or global asymptotic stability). Exponentially
stable systems can tolerate a certain amount of disturbance. First, it is worth pointing out
that the nominal adaptive system (assuming there are no disturbances and unmodelled
dynamics) is exponentially stable. The robustness of the MCS contro! is investigated both
analytically and empirically on the electrohydraulic actuator rig. Additionally, the
robustness of the reduced order MCS controller is proven in the case of both the
electrohydraulic actuator plant and the ESH material testing machine in Chapter 4. The
practical concept of robustness is that stability should be preserved in the presence of
actual disturbances present in the system. The main difference from classical linear control
system robustness margins is that robustness depends not only on the plant and control
system but also on the reference input. The reference input should guarantee persistent
excitation of the nominal adaptive system. The exponential stability of the adaptive system
is guaranteed by a persistency excitation (PE) condition. This will lead to a robustness
margin, that is, bounds on disturbances and unmodelled dynamics which will not destroy

the stability of the adaptive system..

8.3 - HYDRAULIC SYSTEMS

The field of hydraulics is wide and it has been very effectively used in the
industrial machines. There has been a considerable amount of improvement in system
performance utilising hydraulics. One such application is an electrohydraulic robotics
system. Electric motors are found unsatisfactory due to their poor power and heavy
weight. Some features of the hydraulic system include low friction (since the hydraulic oil
being used in most cases act as lubricant), high capacity to take up heavy loads with little
amount of energy consumption (the hydraulic cranes), the portabilify and flexibility to
transfer power from applibations near by (if two robots with similar moments are needed

the piping can be arranged such that the fluid power can be divided to both robots).
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8.4 - MODELLING AND SIMULATION OF HYDRAULIC SYSTEMS

Modelling and simulation of hydraulic systems are extensively used as a design
tool. In order to investigate larger and more complex systems within an economic time
frame. Simulation of hydraulic systems is crucial, as it may indicate whether or not the
designed system will be stable. In addition, it may be helpful in choosing a suitable
configuration for a given application. Also, it may help in choosing suitable controller
parameters satisfying stable closed-loop system response. Many different modelling
methods and software packages have been used to model and analyse the hydraulic
systems. Some of those methods are presented in Chapter 2. In this chapter the
electrohydrautic actuator plant is modelled and simulated by Simulink. Simulink is a
software package for analysing and simulating dynamic systems. It is shown that there is a
good correspondence between the simulated and the actual system responses, indicating
that the mathematical model of the system which is analysed and modelled by Simulink is

accurate.

8.5 - APPLICATIONS OF ADAPTIVE CONTROL IN
ELECTRCHYDRAULIC SERVO FIELD

Adaptive control has been applied to electrohydraulic systems (position control of
hydraulic system, material testing machine) using both direct (Model Reference Adaptive _
control) and indirect (Self-tuning regulator) methods. In the case of the direct method
(MRAC) the controller parameters are estimated directly from input-output data, and not
calculated from the plant model. By contrast, in indirect adaptive control (or self-tuning
regulator) the parameters are derived from the estimated model. If the estimated model is
far from the real plant, then the controller will not perform accurately. Generally, plant '
models always contain some nonlinearities and unmodelled dynamics, and therefore Model
Reference Adaptiife control is more accurate than Self-tuning regulators and it is easy to
implement. The hydraulic system equations are nonlinear and parameters of hydraulic
systems vary greatly. Hyl:lraulic systems exhibit significant nonlinearities. Using linear
control theory in the case of the position control of hydraulic actuator does not produce

satisfactory performance. The adaptive control can adapt itself the sudden changes in the
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plant and good performance can be obtained despite the presence of many nonlinear

characteristics.

8.6 - ROBUSTNESS OF ADAPTIVE CONTROL IN THE CASE OF
UNMODELLED DYNAMICS

Adaptive control method ensures the stability of the plant with unmodelled
dynamics. It has been shown that if the reference input is persistently exciting, then
adaptive control possesses convergence properties which are strong enough to ensure that
disturbances can be tolerated to some extent.

Adaptive control with unmodelled dynamics can be unstable without any
disturbances. Two main instability mechanisms occur due to the unmodelled dynamics. In
the first one, instability occurs due to increments in the adaptive gains while the second
one is less obvious; it occurs when the reference input had too much energy in the
frequency range of the unmodelled dynamics. For those reasons, choosing a suitable
reference model is crucial in the case of adaptive control with unmodelled dynamics. The
dynamics of the whole structure are slowed down by the unmodelled part of the plant,
hence the controller gains should not excite the high frequency modes of the system. This

is important to preserve the stability of the system.

8.7 - THE MCS CONTROL |

8.7.1 - Application of the MCS Control in Servohydraulic Field

It has been shown that MCS works very effectively in servohydraulic applications.
The MCS control can adapt to changes in pressure and temperature, and therefore it
performs better than a linear controller strategy. The MCS control can be used very
effectively in the case of hydraulic positioning systems. These type of systems are gain
sensitive, in other words the sét points may change greatly for a variety of reasons. The
changes are even bigger in the case of hydraulic positioning systems with single rod

actuator. In addition, in the case of material testing field the MCS control can adapt to
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changes in the specimens as well as in the system itself. This was very clearly demonstrated

in Chapter 7.

8.7. 2 - Applications of the MCS Control in Materials Testing
Applications

The MCS control has been used in the materials testing field. The MCS control
was first implemented in the materials testing machine in [1] and very satisfactory result
were generated. In Chapter 6, the MCS controller is implemented on the ESH materials
testing machine under load control. The derived results are better than the conventional
P+DFB controller despite the fact that MCS does not need plant parameters for
implementation, and it can still adapt to plant parameter variations due to the changes in
pressures, temperatures and in the specimens. This fact is very clearly demonstrated in
Chapter 7. In this chapter, specimens having different diametqrs and materials have been
used and performance of the MCS control is compared witﬁ the P+DFB control. The
second set of tests was very useful to show the robustness of the MCS control in the
presence of unmodelled dynamics and parameter variations in the plant. The two
controllers dre implemented in the case of the aluminium specimens with ¢10 mm. 1t is
shown that the MCS control performed better than a well tuned P+DFB control in both
elastic and plastic regions. The fact is shown very clearly by ISE plots. This indicates that
the MCS can adapt to changes in the plant parameters.

The MCS control is used in the case of strain measurement as well in Chapter 7.
These strain measurements is used to obtain the proportional limits of the specimens. After
the proportional limit, the material behave plastically. In Chapter 7, the second set of tests
are planned to be carried out in the elastic-plastic region, therefore it was important to

know for each type of specimens when the specimens start to behave plastically.
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8.7.3 - Application of the MCS Control On the Electrohydraulic
Actuator Plant

The MCS can overcome the difficulties related to the strong nonlinear
characteristic of the electrohydraulic systems. In the case of a hydraulic positioning system,
the MCS control achieved zero steady-state error in the face of load disturbances. Most
importantly, it showed a high degree of robustness and good performance in the presence
of nonlinearities, unmodelled dynamics and parameter variations in the plant. Position
control of a single-rod actuator systems are gain sensitive. This type of system always
gives position errors when operating with a load force. The MCS control is implemented
on the electrohydraulic single-rod actuator plant in Chapter 5. It is shown that the MCS
can overcome the nonlinearities in the plant. The results of the MCS position control is
compared with those produced by P+DFB in the Chapter. Under the nominal operating
condition, the two controllers produced very similar responses despite the fact that the
MCS does not require plant dynamic parameters. Away from normal operating condition
(accumulators switched on and supply pressure is 110 bar), the MCS control performed

better than a well tuned P+DFB controller.

8.8 - THE REDUCED ORDER ADAPTIVE CONTROLLER

Implementing the MCS controller in a reduced order form has many advantages.
Firstly, the structure of the closed-loop system will be simplified. In many cases, although
the transfer function of the plant is derived from the system identification test, there are
always some nonlinearities, disturbances and unmodelled dynamics in plants. In some other
cases, the plants may be over-parameterised. Additionally, even if the plants have higher
order dynamics, if they are not working in the high frequency range then the higher order
dynamics will not be activated and the plant will behave rather like a lower order one.
Hence, using a reduced order controller in the low frequency range can avoid complication
of the controller structure.- Therefore, depending on the systems working conditions, the
reduced order controller will make the whole controller structure simple and more

efficient.
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Two points are important in this case. The first is choosing suitable values for the
adaptive weights. Secondly, choosing a reasonable value for the settling time. Both values
should be chosen to not excite the high frequency modes of the plant which are found in

the unmodelled part of the plant, and will be discussed in the following sections

(sections 8.9.1, 8.9.2).

8.9 - THE REDUCED ORDER MCS CONTROL

The reduced order MCS controller is a form of the standard MCS controller, in
which the controlled plant contains some unmodelled djnamics term inside the controllér
structure. The order of the controller reference model is therefore less than the nominal
transfer function of the system. Generally the slower parts of the plant, which are more
dominant than the fast part of the system, can be matched by the reduced order MCS
control. The fast parts of the plant unmodelled (neglected) and included into the
disturbance term. Then, the whole structure is represented in state space form. It is
assumed that fast part of the plant does not contribute much to the plant output response if
the system is working in Jow or mid frequency range. The robustness of the reduced order
MCS controller is proven by Popov’s and Lyapunov’s method depending on the nature of

the disturbance term in Chapter 4.

8.9.1 - Applications of the Reduced Order MCS Control

In the case ESH material testing machine, the first order SISO MCS control is
implemented. Under the load control the plant is described by a second order nominal plant
transfer function. It has been shown that the MCS control can cope with the unmodelled
dynamics, parameter changes in the plant parameter due to the changes in the pressures,
temperatures and the changes in the specimens. Similarly, the electrohydraulic actuator
plant is modelled in Simulink by a 5™ order transfer function. Subsequently, the system
identification made it clear that no model matched the fifth order models. The fifth order

models are over parameterised. The third order model was relevant for the nominal
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operating condition (accumulators on-line, supply pressure is 110 bar). Hence, the
electrohydraulic actuator plant is controlled under the second order SISO MCS control. In
both cases the MCS was lower order than the plants. The results were very satisfactory, as

1s shown in Chapter 5, 6, 7.

8.9.2 - Stability of the Reduced Order MCS Control {Lyapunov
and Popov’s theory)

Lyapunov’s direct method is a powerful tool to prove the stability of the reduced
order MCS control. In general, unmodelled dynamics always exist in the plant model. It
has been assumed that if the disturbance term due to the unmodelled dynamics, plant
nonlinearities and parameter variations is small then Popov’s method is suitable to prove
the stability of the reduced order MCS system. If the disturbance term is large and rapidly
varying then the Lyapunov’s method is more suitable to guarantee the stability of the
whole system. The stability of the reduced order MCS control is proven in Chapter 4, in
the case of both SISO and MIMO systems. It has been shown that the MCS control is
stable in the presence of unmodelled dynamics provided that the input signal is persistently
exciting and the controller parameters are chosen to not excite the high frequency modes
which are taking place in the unmodelled part of the plant. In this chapter the stability of

the reduced order MCS control is proven using both Popov’s and Lyapunov’s methods.

8.9.3 - Choosing Suitable Settling-time in the Case of Reduced
Order MCS Control

Choosing a suitable settling time of the MCS control in the case of a plant with
unmodelled dynamics s crucial. When the unmodelled dynamics are introduced into the
system, it is assumed that some parts of the plant have negligible effects on plant output
result. Therefore, the slower part of the plant dynamics has been used. Compared to the
nominal plant the reduced order plant has slower dynamics. The reduced order MCS

control can produce very good response if the system is operated in low or mid frequency
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range. Hence, it is necéssary to use a larger value for the settling time compared to the

nominal case assuming that the closed loop system is slower.

8.9.4 - Choosing Suitable Values for Adaptive Weights o and S
in the Case of the Reduced Order MCS Control

- The speed of the adaptation can be increased l?y inpreasing the value of the
integral gain coefficient & . The higher values of a wil! therefore excite the high frequency
modes of the plant which are assumed to take place in the unmodelled part of the plant. In
this case smaller values of integral gain are used compare to the plant without any
unmodelled dynamics (the nominal plant transfer function).

The influence of the proportional gain coefficients f#is to reduce the magnitude of
the ultimate region of convergence of the error, x, as #is increased. Hence, the increment
in the proportional gain will decrease the output error. For slow and medium plants,
increasing the proportional gain will decrease the output error. However in the case of the
plants which are subjected to the rapidly varying external disturbances, unmodelled
dynamics, or the plant which is working in the high frequency range, large values of £ can
lead to large output errors even instability. Very large adaptive gains (@, f) can cause

instability. Therefore, they should not increased beyond a certain point.

8.10 - FUTURE WORK

8.10.1 - Application of the MCS Control on MIMO
Electrohydraulic Systems

The stability of the MCS control in MIMO servohydraulic systems may be
investigated. The MCS control can be implemented on a large hydraulic system (e.g.
electrohydraulic multi arm manipulators, earthquake rig, widely distributed
electrohydraulic systems, etc.). The MCS can be very efficient in the case of multivariable

servohydraulic systems, which are known to suffer from plant order changes under
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different operating conditions. The MCS control can be implemented in centralised or

decentralised form.

8.10.2 - Implementation of the Reduced Order MCS Control on
MIMO Servohydraulic System

One of the future investigations of the reduced order MCS control could be
implementation of the MCS control in MIMO servo-hydraulic fields. The reduced order
MIMO MCS control will simplify the dynamics of the electrohydraulic system, due to the
fact that it will ignore the high frequency modes of the system. The reduced order MCS
control will simplify the structure of the MIMO servohydraulic system and it will make it
possible to control the large or widely distributed servohydraulic systems in a stable
manner. .

Another possibility is using the reduced order MIMO MCS control in the case of
large interconnected non-servohydraulic systems. The reduced order MIMO MCS

controller can be implemented in either centralised or decentralised form.

8.10.3 - Temperature Cycle

In general, during the temperature cyclic loading materials behave nonlinearly
with high temperature. At high temperature the strength of most materials falls, due to the
increasing mobility of dislocations, coupled with a general reduction in the strength of
interatomic bonds and therefore of thé rigidity of the lattice.

At high temperature, a small amount of internal intergranular cracking can occur
over extended time periods. Nonlinear material oscillations are encountered during thermal
cycling. Other nonlinearities include:

(1) - Temperature is not well distributed along the length of gauges.

(2) - Temperaturé changes during tests
According to [2], a thermal cycle could lead to unexpected early failure. This indicates the
possibility that a temperature cycle promotes more rapid failure than an isothermal test.

Adaptive control will preserve the stability of the system in the presence of the
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nonlinearities due to the peaks of oscillations and other sudden changes in the specimen.
Further, using the MCS control in the case of temperature cycling will bring many
advantages, such as rapid adaptation to the changes in the specimens as well as in the

systems.
8.10.3.1 - Thermal Strain Control

Thermal strain is a special class of elastic strain that results from expansion with
increasing temperature or contraction with decreasing temperature. Increased temperature
causes the atoms in a solid to vibrate by a larger amount. Thermal effects are generally
greater at higher temperatures. The coefficient of thermal expansion increases with
temperature.

The most direct method of using strain gauges is bonding to the material surface,
but this method can not be used at high temperature; and the cyclic life of strain gauges is
limited when operating at high strains. Again, the MCS control can be a good option in the

case of thermal strain control.

8.10.3.2 - Thermal Fatigue Testing

Changing the temperature usually affects the fatipue crack growth rate, with
higher temperature often causing faster growth. If a material is tested in & temperature
range where creep occurs, creep strains will contribute to the inelastic deformation in the
test. Fracture toughriess generally increases with temperature. The coefficient of thermal
expansion will decrease rapidly when the temperature is increased. Physical properties of
the material vary with temperature. Moreover, greater creep strain occurs if the speed of |
the test is slower, as a slower test provided more time for the creep strain to accumulate.
Using the MCS control in the case of thermal fatigue testing can be very helpful to

overcome the nonlinearities and parameter variations in the plant and specimens.
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8.11 - THE MCS STRAIN CONTROL (UNDER ROOM TEMPERATURE)

The interpretation of strain becomes extremely important when a strain controlled
test is undertaken in an axially loaded machine. In the case of fatigue test, if tﬁe material
cyclically hardens or softens, the ratio of elastic to plastic strains cannot be held constant
by this method of displacement control. To overcome this problem, the instantaneous load
signal may be fed to a microprocessor that determines the elastic displacement from
knowledge of load and Young’s modulus. Another further implementation of the MCS
control in the material testing field can be strain control in room temperature. Under
plastic strain control, the materials behaves nonlinearly, therefore using the MCS control in
this case has many advantages because it can adapt itself to sudden changes in the both

plant and the specimens.

8.12 - FATIGUE TESTING UNDER THE MCS CONTROL (ROOM
TEMPERATURE)

Under fatigue testing, materials are subjected to repeated loading. In general, one
or more tiny cracks start in the material, and these grow until complete failure occurs.
Prevention of fatigue fracture is a vital aspect of design for machines, vehicles and
structures that are subjected to repeated loading or vibration. In fatigue, materials are
tested under a cyclic load which is lower than the proportional limit of the material. The
test therefore take place completely in the elastic region. After thousands or millions of
repeated loads the structure of the material changes. Using the MCS control or the
reduced order MCS control in fatigue testing may bring advantages due to the adaptability

of the MCS control to changes inside the specimens.

8.13 - THE MIMO MCS CONTROL IN MATERIALS TESTING FIELD

For servohydraulic materials testing machine the MIMO MCS algorithm can be a
very good option. In this case, the MCS could be implemented in both centralised and

decentralised form. The decentralised MCS algorithm uses only local information of each
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subsystem. Therefore, the synthesis of each MCS control input is simplified. Additionally,
this property helps to extent the controller structure when it is needed, e.g. when the
additional parts are added into the interconnected systems. In certain circumstances it is
important to control two variables at the same time. In the case of material testing field the
MIMO MCS control can be used to control two variables such as, stress-temperature,

strain-temperature at the same time.
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APPENDIX 1

POPOV'S HYPERSTABILITY THEORY

The hyperstability theory was developed by Popov as a generalisation of the
absolute stability problem [1]. It was shown in this work that the absolute stability of

feedback systems that can be represented by the standard form, consisting of two blocks, a

linear system in the feedforward block and a nonlinear system in the feedback block as

shown in Fig,' 1.

Linear time-
invariant block

On,l + @ U

W (y.)

x = Ax + Bu e ,
y=Cx+D

[Nonlinear time Ve

varying feedback

system

Fig.1: Standard Nonlinear Time-Varying Feedback System

The feedback block is assumed to varying an input-output relation of the form

W(y.)y. 20
w(y.)=0

(AL1)

where y, and W(y,) are scalar and are respectively the input and the output of the nonlinear
time-varying block. It was observed that the feedback system shown in Fig.1 is absolutely

stable if it is asymptotically stable for all the feedback blocks satisfying the condition

(A1.1),

The hyperstability theory is a generalisation of the absolute stability problem

where the feedback block in Fig. 1 is assumed to satisfy a more general input-output

relation, i.e.
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| yIwadr = ¢ (A1.2)

!0
where ¢; is a positive constant independent of f,. The stability properties of the feedback
system (in Fig. 1) are entirely dependent on the feedforward block characteristics if the

feedback block satisfies inequality (A1.2).

Definition 1:

The linear completely controllable and observable system is given as
X =Ax - BW

v, =Cx—DW (AL3)

where the dimensions of x, ¥ and y, are respectively n, m and m, is hyperstable for all

feedback blocks satisfying (A1.2) if there exist two constant 5(5 > 0) and y(y 2 0) so that

the solution of (A1.3) satisfies the following inequality:
()] < 5(”x(0)" + y) forallz,t 20 (Al.4)

Definition 2;

The linear system (A1.3) is asymptotically hyperstable if it is hyperstable and if*
limx(t) =0 : (AL1.5)

5w

Definition 3:

The linear system (A1.3) is hyperstable if there exist two constants B, and B, so

that the following inequality :
[ 7 @y e I 2B (AL6)

is satisfied for all ¢, 2 ¢, and for all functions ¥ and y, that satisfy inequality (A1.2).
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If we interpret quantity Exr(tl)x(tl) as the stored energy at instant £, then by

setting B, = 8, = —, we observe that the hyperstablllty condmon (Al 6) corresponds to a
passrwty condition, where the stored energy at instant f, must be less or equal to the 1mt1a1
energy (Ex (t(,)x(tm)J plus the added energy between # and 4.

Moreover, it is well known that a linear passive network is characterised by a
positive real transfer function matrix, see [2]. We therefore obtain an equivalent definition

to the hyperstability condition (A1.6).

Theorem 1:

The linear system (A1.3) is hyperstable for all the feedback blocks verifying
inequality (A1.2) if the transfer function matrix G ,(s) = C[ST - A]_l B+ D is positive real.

Theorem 2:

The linear system (A1.3) is asymptotically hyperstable for all the feedback

systems  satisfying  inequality  (A12) if  the’ transfer  function  matrix

G,(s)=C[SI - A]—] B+ D is strictly positive real.
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APPENDIX 2

POSITIVE REAL TRANSFER FUNCTIONS

Definition 1

A rational function G,(s) of the complex variable s = o + j& is positive real

(PR) [1] if the following conditions are satisfied:
1 - G,(s) is real for real s.

2 - G,(s) has no poles in the open right half plane, Re(s) > 0.

3 - The poles of G,(s) on the axis Re(s) = 0 are distinct, and the associated

residues are real and positive (or null).

4 - For all real @ for which s = jw is not a pole of G,(s), we have

Re[G , (S)] >0

Definition 2

A rational function G,(s) of the complex variable s =& + jo is strictly

positive real if the following conditions are satisfied:
1 - G,(s) is real for real s.
2 - G,(s) has no poles in the closed right half plane Re(s) = 0.
3-Re{(G,(s))]>0forall .

Property 1

IfaG, (s) = E(fl is a positive real function, then we have:

d(s)
1 - n(s) and d(s) have real coefficients.

2-1/G,(s) is also positive real function.
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3 - n(s) and d(s) are Hurwitz polynomials.
4 - The order of n(s) does not differ from the order of d(s) by more than +1.

Property 2

If G, (s) and G, (s) are positive real functions, then we have:
1-a,G,(s)+a,G,(s) is positive real (provided that & and e, € R* > 0)

1
2 1 6.006.09

15 positive real.

Definition 3

An nxn matrix G,(s) of real functions is positive real if the following
conditions are satisfied:
1 - All elements of G,(s) do not have poles in the open right half plane, Re(s)
> 0.
2 - The poles of any element of G,(s) on the axis Re(s) = 0 are distinct, and
the associated residue matrix is a positive semidefinite Hermitian.

3 - The matrix G,(jw)+ G (~jw) is a positive semidefinite Hermitian for all

T,

real values of @ which are not a pole of any element of G.(s).

Definition 4

An nxn matrix G,(s) of real rational functions is strictly positive real if the
following conditions are satisfied:

1 - All elements of G,(s) are analytic in the closed right half plane Re(s) > 0.
2 - The matrix G,(jw)+ G (- jo) is a positive definite Hermitian for all real

@.
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Kalman-Yacubovitch Lemma

1 - Consider the linear system:

X = Ax + Bu

y=Cx
The transfer function matrix C(S[ - A)k‘ B is a positive real matrix if, and only if, there
exists a symmetric positive definite matrix P and a symmetric poéitive semidefinmte
matrix () such that:

PA+A"P=-Q

C=B"P
2 - The transfer function matrix C(SI - A)_l B 1s a strictly positive real matrix if, and
only if, there exists a symmetric positive definite matrix P and a symmetric positive
definite matrix O such that:

PA+ATP=-0

C=B"pP
3 - Consider the linear time varying system:

X = A(t)x + B(t)u

y=C(f)x
The transfer function matrix C(t)[s] - A(_t)]_’B(t) is a positive real matrix if and only
if there exists a symmetric positive definite matrix P(f) ‘and .a symmetric positive
semidefinite matrix O(f) such that:

P()A(r) + 4(1)" P(t) + P(1) = -0()

C(2) = B(2)" P(r)

For the strictly positive realness condition, the matrix Q(¥) must be positive definite.
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APPENDIX 3

LYAPUNOV’S STABILITY THEORY

Consider the free system described by the following differential equation:

2= f(x,1) (A3.1)
where xeR". It is assumed that the function fix,7) is sufficiently smooth so that the
equation has a unique solution starting at any initial state x, at any time £, We further
assume that there exists a unique vector solution (1, x,, to),. differentiable in ¢, such that,
for any fixed x, and 4

(I)(to,xﬂ,to) = X,

d
E(D(t’xmto) - f((D(Z’ xo,l‘o),f)

Definition 1

An equilibrium state x, of the free dynamic system (A3.1) is stable if for every real

number £> 0 there exists a real number &(,,) > 0 such that the condition [x, - x| < &

implies ”(I)(t, xo,to) - X, l <g¢ forall r =14,

Definition 2
An equilibrium state x, of the free dynamics system (A3.1) is asymptotically stable

1 - it is stable

2 - every motion starting sufficiently near x, converges to x, as f tends to infinity.

253




PN

s 0 7 om0 P SRS W 0 8 T B

Definition 3

An equilibrium state x, of the free dynamic system (A3.1) is globally
asymptotically stable if
1 - it is stable

2 - every motion converges to x, uniformly in x, for x| <r is fixed but

arbitrarly large.

Definition 4

An equilibrium state x, of the free dynamic system (A3.1) is uniformly
asymptotically stable if: |

1 - it is stable

2 - every motion starting sufficiently starting near x, converges to x, uniformly in

f,, i.e. the term & does not depend on 4.

Theorem (Lyapunov)

Consider the free dynamical system
%= f(x1) (A3.2)
where f{0,7) = 0 for all z. Suppose there exists a scalar function F(x,f) [1] and [2] with
continuous first partial derivatives with resspect to x and # such that V(0,7) = 0 and
1 - V(x,f) is positive definite, i.e. there exists a continuous, nondecreasing scalar .
function « such that (0) =0 and all f and alix# 0
0< a(“x") <V (x,1)
2 - There exists a continuous scalar function y such that ®(0) = 0 so that the

derivative V of V along the motion starting at ¢, x satisfies, for all 7and x # 0:

V(e) = G < o) <0
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3- af|xf) - o as > .
then the equilibrium state x, = 0 is globally asymptotically stable and V(x,7) is called a

Lyapunov function of the sysstem (A3.2).
For the uniform asymptotic stability of the equilibrium state x, = 0, condition (3)

is replaced by the following condition:

- there exists a continuous, nondecreasing scalar function £ such that £(0) = 0,

and all £, we have:

V(x.0) < B()
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Application of the MCS Algorithm
to the Control of an Electrohydraulic System

D P Stoten, S Bulut

Department of Mechanical Engineering, University of Bristol, Bnistel, BS8 | TR, UK
Phone ++44 (0)272 288208

Abstract - This paper describes the application of the direct
adaptive minimal! coatrol synthesis (WMCS) algorithm fo a
specific problem in elecfrohydraulic contrel. In particuiar,
comparative implementation studies are presented of a typical
servohydraulic positioning system, 8s used in aerospace
applications. It is shown that MCS outperforms a well-designed
conventional controller, especially when the plant is subjected
te gross internal parameter changes.

INTRODUCTION
't
! The adaptive MCS algorithm was first proposed in 1990
f1] as a form of direct adaptive control for multivariable plant
subject to unknown (but bounded) plant parameter changes and
external disturbances. In addition, closed-loop stability and
robustness proofs were presented for the large class of
(electromechanical) plant with Lagrangian dynamics - despile the
fact that no a priori knowledge was required concerning the
nominal values of the plant parameters. The implemented form of
MCS therefore required a minimal amount of information on the
plant, and since no on-line plant estimation procedure was required,
only a minimal amount of control code (¢f a PID controlier) was
necessary.  These attributes of minimal design input and coding
requirements led to the coining of the controller's name. Since
1990, significant extensions to the basic MCS algorithm have been
presented (including a decentralised version), together with sets of
unplementation studies,  An overview of the algorithm, its
extensions, together with implementation case studies, is presented
in [2}. In all the cases described in [2], the predicted performance
characteristics of MCS were matched in practice.

Of particular relevance to this paper is a study briefly
described in {2], and in more detail in [3], conceming the MCS
control of a servohydraulically actuated materials testing machine.
The problem investigated in [3] was the load {force) control of a
[aligue test specimen subjected to varying degrees of crack
propagation. Although [3] indicated that MCS held much promise
for application to the field of servohydraulic control, the test rig
used was of a rather specific nature, and atypical of a wide range of
practice, Hence, one of the main objectives of this paper is to
present the application of MCS to the control of a typical
servohydraulic positioning system as used, for example, within
aerospace systems for actuation of flight control surfaces.

The remainder of this paper is structured as follows: in the
aext section, the test rig is described, together with the dynamic
nodelling and system identification results. Then, the linear fixed
2ain and MCS control system designs are presented, followed by the
romparative test results. Finally, the main conclusions to the paper
ire presenfed together with further implications for MCS control
within this general field.

PLANT DYNaMICS AND SysTEM IDENTIFICATION TESTS

The plant consists of Moog E760 torque motor/flapper
operated four-way double-acting servovalve, hydraulically connected
to a cylinderfactuator arm. The actuator cylinder has a diameter of
32mm, the actuator arm has a stroke of approximately 100mum, and
the end of the arm is connected to an inertial load representing an
aircraft control surface. See Fig 1. In this arrangement there is no
representation of the effect of acrodynamic forces (which would
nermally produce a restoring force on the actuator arm in flight).
However, the rig is in ail other respecis quite representative of
servohydraulic systems used in aerospace (and other) systems.
The input to the ptant is the control voltage, u, applied to the torque
motor current ampiifier, and the output, y, is an LVDT measwre of
the actuator arm displacement, x;.

Switchable accumulators are situatad either side of the
actuator arm piston; in normal use these devices would generate a
source of energy to smooth out hydraulic pressure fluchuations
and/or make provision for shori-term increases in load. In the
context of the tests described in this paper, the switching of the
accumulators is a method for changing the plant parameters - thus
providing a mechanism for gauging closed-loop system robustness.
Another method of plant parameter variation used in the tests is to
lower the supply pressure - from 11.0MPa to {.4MPa (ie 1600psi 1o

200pst).
Accumulator Accumu!atoo Load

Actuator cylinder/arm i

| vor Y
C .|
1 £ adjusl
P, adpust
Hlame Lyl Servovalve 7LI P,

Fig 1 Servohydraulic test rig

The dynamics of systems as depicted in Fig | are known
1o contain significant non-linear elements, eg see [4], [3). Howevar,
a linearised representation of the input/output relationship is used in
the design of a conventional fixed-gain controller for Ihe

comparalive tesls. A typical transfer function model i3 then given

by 4], (5}, {61!
G, () = Y5/ u(s) = Gs)Gy(5)G,(8)




arer aorne e e

wi:ere G (s) represents the amplifier/lorque motor transfer function,
(Gx(s) is the servovalve transfer function and Gy{s) is the actuator
arm transfer function. Each of these terms is typically modelled as
follows:

K,
Gi(s) = 1+‘:: s
t
X
Gy(s)=——
Sl + —2¢15 +1
mnl mnl
K
Gy(s) = !

Consequently, the nominal linearised model is of 5% order,
including a free integrator. However, various further simplifications
can be justifiably made. For example, the pole of Gy(s) is typically
much faster than those of Gx{s) and Gx(s), so that the plant can be
adequately modelled by a 4™-order transfer function. Similarly, the
relative locations of the servovalve and actuator arm poles can lead
o 3= and 2™-order models (all including the free integrator).

A series of system identification tests were conducted on
the open-loop plant, which yielded a number of transfer function
imodels for different operating conditions (as discussed above, and
ssummarised in row 1 of Table 1), The test results were generated
jfom a swept sinusoid input signal, with data analysed by the
Matlab System Identification Teolbox macro oe (output-error
method). Consistent 5™-order models were not generated by the
melthod, leading to the conclusion that such models were over-
parameterised, and that the torque motor pele was indeed much
faster than all he others. Hence, Table 1 shows the resulting 4™,
13" and 2™-order lransfer function numerators and denominator
iwols, under the different operating conditions [A]-[C).

Condition [A]: Condition [B]: Condilion [C]:
11.0MPa; 11.0MPa; 1.4MPa;

{| Order Accum. on Accun. off Accum. on
i 4 num =9.11:< 10° num = 708 x10* num = 22.1x 10°
£ den roots: den roots: den roots:
i Q,-15.5, 0;-4.32, ,-30.1;
-151% 5229 -35.81 5231 -33.5% 4276
HIE num=283%10° | num=179%10" | num=4.60x10*
: den rools: den roots: den rools:
‘ 0, - 880 % fI160 0, — 409+ 4203 0,—278% ;204
1 2 num = 62.4 num = 108 nunt = 47.2
5 den roots; den roots: den roots:

0, —4.58 0,-103 0;—-9.19

ATl 3 B0 i1

bt

Table | Identified plant transfer function data

JSeveral points are worth noting [rom this table:

HD) For Condition [A}, the 4"-order model poles are
“fominated by the conjugate pair at s = -7.51 £ ,22.9, so that the
‘ctuator arm pole at s = -15.5 may (as an approximation) be
Yignored. This justifies the use of the given 3“-order model for
‘Condition [A] - ie the normal operation case.

i) For Condition [B), the above situation is reversed, for now
he pole associated with the actuator arm provides the dominant
omponent of the dynainics. Hence, the given 2™-order model is a
justifiable approximation of Condition [B] dynamics,

(i) For Condition [C], the servovalve and actuator arm poles
are equally significant, and the given 4% order model is the most
justifiable approximation in this case. :

{iv) The conventional controller will be designed for the
nominal operation of the plant, fe Condition [A)], with the third
order model for G,{s) being used.

(v) Changes in the plant supply pressure and/or accumulator
settings have significant effects on the plant parameters and plant
deminant dynamics.

CONTROLLER DESIGNS

Conventional Fixed Gain Control

Bode plots for the nominal (Condition [A]) third order
plant transfer function are shown in Fig 2 (labelled ‘Gp’), indicating
that there is sulfficient low frequency gain (due to the free
integrator), but a requirement to increase the margins (from 2.14B
and 55°) and the closed-loop bandwidth (from 10 rad/s). A
proportional-plus-derivative feedback (P+DFB) controlier was
proposed with a proportional gain kK, = 1.0 and a derivative
feedback gain ks = 0.1. The resulting open-loop transfer function
plots are also shown in Fig 2 (labelled ‘GH"), which yield margins
of « dB and 61°, plus a bandwidth of 18.2 rad/s. The closed-loop
step rtesponse settling time was therefore predicted to be
£, =4/(0.61x18.2) = 0.4s, with an oscillatory component containing
approximately two overshoots -  this was deemed to be an
acceptable performance. In discrete-time, the implemented form of
the controller was:

u(k) = k e(k) = kb [Ak) ~ (k= D]/ A (1)

where u(k) was the current control signal, e(k) the current tracking
error, k) the current measurcd actuator arm position and A the
sampling interval.

100

gain / {dB]
]
|
{

7/
/ ;/
I

2200 b SRR MR

phase / {deg)

400 - , .
R 10 10 10

requency [ [rad/s]

Fig 2 Plant and plant/controller Bode plots
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MCS Control
Details of the MCS structure have been presented

elsewhere (g [1]-[3]). Often, an a priori estimate is made of the
nominal plant order, and the order of the MCS algorithm matches
this figure - hence, for the given nominal plant, one would normaily
expect to implement a 3%-order algorithm. However, it has been
observed, eg [3], that MCS possesses a degree of robustness to
mismatches in orders. In particular relatively low order MCS
controllers can be very effective in the control of higher order
plants.

Therefore, one objective of this work is to provide further
experimental cvidence of this form of robusiness via
implementation of the 2**-order MCS equarions (i = 1,2) which are
summarised below, in discrete-time scalar form:

u(k) = k,(k)r(k) + k (k)x (k) + by ()2, (k) (2)
k (k) = k,(k =D+ By, (F)r(k)— oy, (k - Dr(k ~ 1) 3)
k() = (k=D + By () () —oy (k- Dx (k= 1) 4)
y (kY= (167162 )x, (kY + (411 )x, (k) (5)
x (k) = x (k) — %, (k) (6)
x ()= x (A -+ Ax (k-1 (7
X (k) = (=168 7 )x (k= 1)+ (1-8AT )3y (k=1 ()

+(16A1 )tk —1)

Here, o = B - aA, where {0, B} are the adaptive weights, with a
typical ratio of /f = 10 and o> 0. During the tests presented in
the next section, the values of the adaplive weights were fixed at
0.001 and 0.0001, these values having been deduced experimentally
as providing a good compromise betwecen the speed of adaplion and
noise propagation. Also, {k, k; k;} arc the adaptive forward,
positional and velecity gains, r is the reference signal, x; { =) is
the measured actuator arm position, x» is the measured velocity, y.
is the output error (which ensures positive realness of the forward
loop error dynamics, [1]), xm are the reference model states and ¢,
( = 0.25s in the following tests) is e slep response setlling time of
the reference model. Thus, (2) is a standard state feedback control
equation with adaptive gains given by (3), (4). Coeffcients in the
output estor equation (3} ensure positive realness of the forward
error dynamics by satisfying, in turn, an associated Lyapunov
equation [1]. The cocflicients in the reference model equations (7),
(8) ensure, to a [irst approximation, that the ideal step response is
critically damped, with a settling time of f, and zero steady state
ervor. [t may be noted that {(2)48) contain no explicit (or implicit)
reference to any plant parameter values.

COMPARATIVE IMPLEMENTATION TESTS

Step response tests; Condition {A]: Supply pressure 11.0MPa;
Accumulators on-line.

The conventional P+DFB response with the rig in the
nominal configuration, viz a supply pressure of 11.0MPa and the
accumulators on-line, is shown in Fig 3. In this case, the demand
was a square wave of amplitude 1.0V and {requency 0.25Hz. (All
controllers were implemented via WinCiri [7], on a 486 PC, with
A = 5.0ms). The desired response - as specified by £, = 0.25s - is
shown in Fig 3 as “xml’, together with the actual response X1
There is good correspondence between the desired and actual

responses (apart from small steady-stale errors due to spool valve
stiction), indicating that the third crder plant model and P+DFB
synthesis are well-founded. ‘

anl  xl
1
g
é 0
-1
0 10 20
time / [s)

Fig3 P+DFB step response for the nominal case

With the initial condilions on the adaptive gains set to
zero, the MCS yielded the steady state response (ie when the gains
were in a quasi-static state) shown in Fig 4a, together with the gains
themselves in Fig 4b. There is no significant difference in response
from the P+DFB case, and so MCS matches the performance of this
well-tuned conventional controller - however, without the necessity

for system identification and controller synthesis. The initial
adaptive stage of the MCS controller is shown in Fig 5.
xmi  x!
1 T
W
2
2 § ORttdt vt o
: O : 0 ;
¢ ] P E— |
A AT
Q. 10 20 0 10 20
time I (5] time / {s]

Fig 4a Responses Fig 4b Gains
Figd MCS step response for the nominal case: steady-state

xm b xL‘
e 1
g
g )
0 10 20 0 10 20
time ! 5 time  [3]
Fig 5a Responses Fig 5b Gains

Fig 5 MCS step response for the nominal case: initial adaption
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- Sinusoidal tests; Condition [A]-[B]: Supply pressure 11.0MPa;
Accumulators switched.

Switching the accumulators suddenly off-line, and then
i on-line again, produces significant changes in the plant dynamics.
i The purpose of this set of tests is to compare the efficacy of MCS
i in the face of such changes, when compared with the P+DFB
' controller. The demand signal in this case was a sinusoid of
amplitude 2.0V and frequency 3.0Hz - sufficient to test the closed-
loop systems near to the expected bandwidth of the nominal plant.

The resulting tracking error (*xm1-x17) for P+DFB control
is shown in Fig 6a, whilst that of MCS is in Fig 6b. Comparing
these figures, it is evident that the MCS controller has out-
performed P+DFB. A comparison of the corresponding controls in

-Fig 7 reveals that MCS produces a signal with a greater amplitude
and (in this case) with more effect. The difference in performance

“is most evident in Fig 8, plots of the corresponding integral-square-
error (ISE) criterion for each closed-toop response. Of particular
note is the slope of the ISE plot during each section of the test - the
slope for MCS remains less than that for P+DFB, whether the
accumulators are on-line or off-line.

1 1
fxccum_ ofl (qccum, on Aceum. off  Acenm. on
) 2
! E
: 0 g 0
——" - xmid x|
-1 -1
0 5 10 0 5 10
lime { [s} time / [s]
Fig 6a P+DFB Fig 6b MCS
Fig 6 Tracking error, supply 11.0MPa; accumnulators switched
‘ Accumn, off  { Accum. on
’[ 2 Accum. off TAccum. on 2 [
Il =
50 z 0
H i 8
2 -2
0 5 10 0 5 10
time /(3] time /{s]
Fig 7a P+DFB Fig 7b MCS
Fig 7 Contro} signals; supply 11.0MPa; accumulators switched

0.5
0.4} P+DFB
gO.B
:% 0.2
0.1
0O 5 10

time /5]

Fig 8 ISE criteria; supply 11.0MPa; accumulators switched

Sinusoidal tests: Condition [A]-fC]: Supply pressure varied;
Accumulators on-line

In order to investigate the robustness of MCS in the face
of supply changes, the sinuscidal tests were repeated with the
accumulators on-line, but with a decrease in the pressure. This
decrease was from the nominal 11.0MPa to 1.4MPa (ie to
approximately 13% of the normal operating pressure) over a period
of about 6s. The significance of this test, over and above it being
another demonstration of MCS robustness in the face of plant
parameter variations, is that in practice a coupled servohydraulic
system can be subjected to a decrease in supply pressure, following
increased demands from other services. In such circumstances, the
affected system should be able to perform the given task with
minimum disturbance,

Fig 9a presents the P+DFB tracking error under the stated
test conditions, with the corresponding MCS results being shown in
Fig 9b. Again, comparison of the figures shows that MCS has out-
performed P+DFB. Plots of the corresponding control signals in
Fig 10 clearly show the greater contribution of MCS as the pressure
is decreased - the control signal reaches the servovalve solenoid
amplifier saturation limits of +2.5V on each cycle. During periods
of saturation, an anti-windup strategy is vilal, in this case the
adaptive gains are locked at their current values, and then released
when Ju| < 2.5 . The excellence of MCS performance is further
amplificd by the ISE plots in Fig 11, whereby the rate of increase of
the MCS ISE is always less than that of P+DFB. Exact parity of the
transients in the pressure supply was not achievable, and so only the
steady slate (fe ‘slraight-line’) sections of the plots are of
significance. ‘
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Fig 9 Tracking error, supply decreased; accumulators on-line
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Fig 10 Control signals, supply decreased; accumutlators on-line
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Fig 11 ISE critenia, supply decreased; accumulators on-line
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CONCLUSIONS

The main conclusions {o be drawn from this paper are as

Linear models of a typical servohydraulic system have been
derived under a number of operating cenditions, For nominal
operations, a 3™-order transfer function model was seen to be an
appropriate choice, and this particular model was used to design
a fixed gain proportional-plus-derivative feedback (P+DFB)
controller for the plant. The closed-loop performance of the
P+DFB controller matched the design expectations when the
plant was operated under nominal condilions,

Away from nominal operations, the linear plant model changed
in order and in parameter values. Under these circumstances, it
was seen that the P+DFB performance deteriorated
significantly.

The direct adaptive minimal control synthesis (MCS) algorithm
was implemented on the servohydraulic plant, and the closed-
Toop results compared with those produced by P+DFB. Under
nominal operating conditions, the two controllers produced very
similar responses, despite the fact that MCS required neither
prior, nor on-line, estimates of the plant dynamic parameters.
When the plant was operated away from the nominal condition,
the MCS algorithm significantly outperformed P+DFB - a fact
most noticeably demonstrated by the ISE plots in Figs 8 and 11.
The robustness of MCS to plant parameter variations has been
proven in, for example, [l). However, this paper has
demeonstrated, for a specific case, that MCS also possesses a
depree of robustness to plant order changes. In particular, a 2™-
order MCS algorithm produced excellent closed-loap responses
under the nominal operating condition {when the plant was
approximately 3-order), and under other operating conditions
(when the plant was approximately 2"- or 4%-ordér).

Robusiness issues of MCS to changes in plant order will be the
subject of a formal analysis in future work on this topic, In
particular, this feature of MCS will be applied to multivariable
servohydraulic systems powered by a single supply - a corunen
design feature of {(aerospace) servohydraulic systems, which ars
known to suffer from plant order changes under different
operating conditions. '
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