An Easy, Rapid, and Reproducible Way to Create a Split-Thickness Wound for Experimental Purposes


JOURNAL OF CRANIOFACIAL SURGERY, vol.25, no.5, pp.1898-1901, 2014 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 25 Issue: 5
  • Publication Date: 2014
  • Doi Number: 10.1097/scs.0000000000000921
  • Page Numbers: pp.1898-1901


Partial-thickness wound models of rat skin have some difficulties in creating the wounds in equal size and depth. Moreover, making a split-thickness wound on the rat skin seems not to be simple and rapid. A new alternative method was presented here to overcome these obstacles, by using a waterjet device to create a split-thickness wound on rat skin. Twenty-four male Wistar rats were randomly divided into 3 groups. An area of 4 x 4 cm in diameter was marked on the center of the dorsal skin. Waterjet hydrosurgery system was used to create a wound on the dorsal rat skin, by removing the outer layers of the skin. In group 1, rat skin was wounded with setting 1 to create a superficial skin wound. In group 2, it was injured with setting 5 to make a deeper wound, and in group 3, skin wound was performed with setting 10 making the deepest wound in the experiment. After the wounds were created on the rat skin, a full-thickness skin biopsy was taken from the middle of the cranial margin of the wound, including both the wound surface and the healthy skin in a specimen. Healing time of the wounds of animals was recorded in the experiment groups. Then, the results were compared statistically between the groups. In the histologic assessment, both the thickness of the remnant of the epidermis in the wound surface and the thickness of the healthy epidermis were measured under light microscope. Thickness of the epidermis remaining after wounding was statistically compared among the groups and with the healthy epidermis. The mean thickness of the remaining epidermis was determined for each group. It was higher in the superficial wounds than in the deep wounds, because of the removal of the skin from its outer surface through the deep layers of the skin with waterjet device. The most superficial wound in the experiment was observed in group 1, which was statistically different from the wounds of group 3, whereas there was no difference between the wounds of groups 1 and 2. Compared with the wounds of groups 1 and 2, the wounds in group 3 were significantly deeper than the wounds of other groups, which was statistically significant. In all groups, mean thickness of epidermis in the wound surface showed statistically significant difference from that in the healthy skin. When compared with the healing times of the wounds in the groups, a statistically significant difference was found between them.