Intense laser field effect on the nonlinear optical properties of triple quantum wells consisting of parabolic and inverse-parabolic quantum wells


Öztürk O., Alaydin B. Ö. , Altun D., Öztürk E.

Laser Physics, vol.32, no.3, 2022 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 32 Issue: 3
  • Publication Date: 2022
  • Doi Number: 10.1088/1555-6611/ac5516
  • Journal Name: Laser Physics
  • Journal Indexes: Science Citation Index Expanded, Scopus, Compendex, INSPEC
  • Keywords: intense laser field, parabolic quantum well, inverse parabolic quantum well, electro-optical changes, nonlinear optical rectification, second harmonic generation, third harmonic generation, 2ND-HARMONIC GENERATION, HYDROSTATIC-PRESSURE, ELECTRIC-FIELD, RECTIFICATION, TEMPERATURE, ABSORPTION, EXCITONS, DONORS, 2ND

Abstract

© 2022 Astro Ltd.The nonlinear optical rectification, the second harmonic generation coefficient, and the third harmonic generation coefficient in parabolic-inverse parabolic-parabolic quantum wells (PIPPQWs) and inverse parabolic-parabolic-inverse parabolic quantum wells (IPPIPQWs) are calculated varying the intense laser field (ILF) parameter ( α0 ). The modifications of the dipole moment matrix elements and the energy levels are depending on the potential shape. The results show that the ILF intensity exerts an active influence on the profile, height, and width of the confinement potential of both PIPPQW and IPPIPQW. The potential profile of IPPIPQW has been affected otherwise than PIPPQW for different ILF intensities. The nonlinear optical rectification, the second harmonic generation, and the third harmonic generation coefficients of PIPPQW and IPPIPQW could be altered in the energy range and the size of the resonance peak by rising the ILF intensity. By changing the α0 parameter, it is conceivable to organize red or blue shift at the resonance peak positions of the nonlinear optical rectification, the second harmonic generation, and the third harmonic generation coefficients. The shift of the nonlinear optical rectification coefficient occurs when the difference between the ground and the second energy levels changes. According to the parameters used here, while for PIPPQW the spectrum of the resonance peak of the nonlinear optical rectification displays a blue shift with increasing ILF, this spectrum displays a red shift for IPPIPQW. The consequences can be valued in investigating new ways of changing the optical and electronic properties of semiconductor quantum wells.