Advances in Colloid and Interface Science, cilt.340, 2025 (SCI-Expanded)
Defect engineering represents a paradigm shift in tailoring nanomaterials for enhanced catalytic performance across various applications. This manuscript succinctly highlights the significance of defect engineering in improving the catalytic performance of BiOI nanoparticles for multiple applications, particularly in photocatalysis. The photocatalytic process of BiOI semiconductor is intricately linked to its indirect bandgap and layered crystalline structure. By influencing the structural dynamics of its layered materials, defects contribute significantly to optimizing its catalytic performance. “Fundamental insights into manipulating defects, including oxygen and iodine vacancies, bismuth defects, and synergistic dual defects, in BiOI are meticulously discussed. Advanced characterization techniques, spanning spectroscopy to microscopy, are explored for precise defect identification and quantification. The fragile van der Waals forces foster interactions between adjacent iodine atoms in BiOI, contributing to the overall structural stability”. Understanding these structural intricacies lays a robust foundation for comprehending and exploring the exceptional physicochemical properties of two-dimensional BiOI. The manuscript showcases BiOI potential in energy and environmental sectors, ranging from solar-driven H2 evolution to CO2 reduction and various harmful pollutant degradation. By unravelling the intricate interplay between defects and catalytic activity, this manuscript sets a new benchmark for tailored catalytic solutions. This manuscript offers a comprehensive overview of defect engineering in BiOI and charts a path towards sustainable and efficient photocatalytic systems. It underscores the imperative of meticulous defect control and innovation in addressing the pressing challenges of the energy and environmental landscape.