Investigation of structural, morphology, and conduction mechanism of GO–Fe3O4–TiO2 composite material


ATEŞ A., brahim K. b., Çakmak N. K., Oueslati A., Gargouri M.

Journal of Materials Science: Materials in Electronics, cilt.34, sa.24, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 24
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s10854-023-11126-x
  • Dergi Adı: Journal of Materials Science: Materials in Electronics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, MEDLINE, Metadex, Civil Engineering Abstracts
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

The graphene oxide composite (GO), iron oxide (Fe3O4), and titanium dioxide (TiO2) were prepared by the sol–gel process. The surface of GO is coated with TiO2 and Fe3O4 nanoparticles, and the composite contains 10.26% C, 23.70% O, 57.17% Ti, and 8.87% Fe. The formation of anatase TiO2 and magnetite Fe3O4 on the surface of GO was detected by XRD and Raman analysis. The N2 adsorption–desorption isotherm and pore size distribution results showed the formation of a mesoporous material with a specific surface area of 233.3 m2/g, a total pore volume of 0.298 cm3/g, and an average pore diameter of 7.7 nm. The GO–Fe3O4–TiO2 composite’s dielectric characteristics were examined in the frequency and temperature ranges of 0.1 Hz–5 MHz and 293–373 K, respectively. The Nyquist plot suggests the non-Debye conduction behaviour, which may be related to the distribution of relaxation times within the composite material. The contribution of grains and grain boundaries to the total conductivity is confirmed by impedance spectroscopy. Jonscher’s power law was used to examine AC conductivity graphs, and the variation in the exponent “s” revealed that CBH models accurately characterize the conduction mechanism in the composite. The dielectric measurements reveal Maxwell–Wagner polarization and a thermal-activated relaxation process.