Inverse problems for a conformable fractional Sturm-Liouville operator


Adalar İ., Özkan A. S.

JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, cilt.28, sa.6, ss.775-782, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 6
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1515/jiip-2019-0058
  • Dergi Adı: JOURNAL OF INVERSE AND ILL-POSED PROBLEMS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Compendex, INSPEC, MathSciNet, zbMATH, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.775-782
  • Anahtar Kelimeler: Inverse problem, conformable fractional derivatives, Weyl function, Hochstadt-Lieberman theorem, SPECTRAL PROBLEMS, BOUNDARY
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

In this paper, a Sturm-Liouville boundary value problem which includes conformable fractional derivatives of order a, 0 <= alpha <= 1 is considered. We give some uniqueness theorems for the solutions of inverse problems according to the Weyl function, two given spectra and classical spectral data. We also study the half-inverse problem and prove a Hochstadt-Lieberman-type theorem.