Quantum Chemical Studies on the Corrosion Inhibition of Fe78B13Si9 glassy alloy in Na2SO4 Solution of Some Thiosemicarbazone Derivatives


Creative Commons License

SARAÇOĞLU M., Elusta M. I. A. , KAYA S. , KAYA C. , KANDEMİRLİ F.

INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, cilt.13, ss.8241-8259, 2018 (SCI İndekslerine Giren Dergi) identifier

  • Cilt numarası: 13 Konu: 8
  • Basım Tarihi: 2018
  • Doi Numarası: 10.20964/2018.08.74
  • Dergi Adı: INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE
  • Sayfa Sayıları: ss.8241-8259

Özet

In this study, the density functional theory (DFT) at the gradient-corrected correlation functional of Lee-Yang-Parr (B3LYP) functional with 6-311++G(2d,2p), correlation-consistent, polarized valence, X-zeta (cc-pVTZ) basis sets, BP86 functional with/6-311++G(2d,2p) basis set and ab initio calculations using the Hartree-Fock (HF)/6-311++G(2d, 2p) methods in gas and water phase of neutral and protonated forms of molecules were performed on six thiosemicarbazone derivatives, namely 4-methyl acetophenone thiosemicarbazone (Inh 1), 4-methoxy acetophenone thiosemicarbazone (Inh 2), Benzaldehyde thiosemicarbazone (Inh 3), 4-methoxy benzaldehyde thiosemicarbazone (Inh 4), 4-ethyl benzaldehyde thiosemicarbazone (Inh 5) and 4-bromo benzaldehyde thiosemicarbazone (Inh 6). The quantum chemical parameters/descriptors, namely, dipole moment (D), highest occupied molecular orbital energy (E-HOMO), lowest unoccupied molecular orbital energy (E-LUMO), HOMO-LUMO energy gap (Delta E), absolute electronegativity (chi), absolute hardness (eta), softness (sigma), proton affinity (PA), electrophilicity (omega) and nucleophilicity (epsilon) were calculated and correlated with the experimental inhibition efficiencies (% IE). It was observed that the theoretical and experimental results were in good agreement.