Determining the Most Appropriate Classification Methods for Water Quality


World Multidisciplinary Earth Sciences symposium (WMESS), Prague, Czech Republic, 5 - 09 September 2016, vol.44 identifier identifier


Assessing water resources' quality and also monitoring them have attracted lots of attention in the recent years. Remote sensing has been growing widely in the last decade and its resources are very usable when it comes to water resources management. In this study, by using remote sensing technology, satellite images that have 350 to 1050 nanometres wavelength band sensors are used to determine the quality of the Kizilirmak River's water. Through the river's resources, ground based spectral measurements are made to identify the quality differences of the water at the test spots that have been determined before. In this context at Imranli, where the river contacts civilization for the first time, which is located in Sivas city of Turkey, samples are gathered in order to do ground based spectroradiometer measurements. These samples are gathered simultaneously with the image acquiring time of CHRIS Proba satellite. Spectral signatures that are obtained from ground measurements are used as reference data in order to classify CHRIS Proba satellite's hyperspectral images over the study area. Satellite images are classified based on Chemical Oxygen Demand (COD), Turbidity and Electrical Conductivity (EC) attributes. As a result, interpretations obtained from classified CHRIS Proba satellite hyperspectral images of the study area are presented. Spectras are readied for Matched Filtering and Spectral Angle Mapper methods for determining the best classification method.