Preparation of Eco-Friendly Composite Material for Mercury (II) Adsorption Including Non-Wood Content From Walnut Green Husk (Juglon Regia L.): Experimental and Theoretical Studies


Creative Commons License

Koçak N., Çoktaş F., ŞİMŞEK S., BATIR G. G., Maslow M.

Water, Air, and Soil Pollution, cilt.235, sa.7, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 235 Sayı: 7
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11270-024-07200-7
  • Dergi Adı: Water, Air, and Soil Pollution
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, ABI/INFORM, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Compendex, Environment Index, Geobase, Greenfile, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Adsorption, Composite, DFT, Mercury, Walnut Green Husk
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

In this study, the adsorption properties of a composite material consisting of polyacrylamide, an inert polymer, and an extract obtained from the water-soluble part of a green walnut shell were investigated for Hg(II) ions. SEM, EDX, FTIR, and PZC analyses were performed to characterize the newly synthesized material. SEM and EDX analyses confirmed that the surface of the synthesized adsorbent became softer and smoother after adsorption, indicating the presence of Hg in its elemental composition. FTIR analysis showed that mercury enters the structure through chemical interactions, and there are changes in bond vibration frequencies in the presence of Hg(II). According to the PZC point analysis, the point at which the surface charge was zero was found to be pH 4. The Langmuir model was used to calculate the adsorption capacity after investigating the effect of concentration on adsorption. The adsorption capacity was found to be 1.808 molkg−1 (362,67 mgg−1) from the Langmuir model, which is very high compared to similar adsorbents. PFO model was used to explain the adsorption kinetics and very fast adsorption kinetics were observed. The adsorption entropy increased, free enthalpy of adsorption was negative, and heat of adsorption was in the energy-consuming direction.