Comparison of the monitoring of surface deformations in open-pit mines with Sentinel-1A and TerraSAR-X satellite radar data


GÜL Y., Poyraz B., POYRAZ F.

Environmental Monitoring and Assessment, cilt.196, sa.6, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 196 Sayı: 6
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10661-024-12717-9
  • Dergi Adı: Environmental Monitoring and Assessment
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, ABI/INFORM, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: GPS, InSAR, LOS, Open-pit mines, Sentinel-1, TerraSAR-X
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

In case necessary precautions are not taken in surface mines, serious accidents and loss of life may occur, particularly due to large mass displacements. It is extremely important to identify the early warning signs of these displacements and take the necessary precautions. In this study, free medium-resolution satellite radar images from the European Space Agency’s (ESA) C-band Sentinel-1A satellite and commercial high-resolution satellite radar images (SAR, Synthetic Aperture Radar) from the Deutsches Zentrum für Luft- und Raumfahrt’s (DLR) X-band TerraSAR-X satellite were obtained, and it was attempted to reveal the traceability and adequacy of monitoring of deformations and possible mass displacements in the dump site of an open-pit coal mine. The compatibility of the results obtained from the satellite radar data with two devices of Global Positioning System (GPS) which were installed in the field was evaluated. Furthermore, the velocity results in the Line Of Sight (LOS) direction and vertical deformation velocity results obtained with all three approaches (GPS/Sentinel-1A, GPS/TerraSAR-X, and Sentinel-1A/TerraSAR-X) were compared. It was observed that the results were statistically equal and the directions of movement were similar/compatible. The result of this study showed that deformations at mine sites can be monitored with sufficient accuracy for early warning with free Sentinel-1A satellite data, although the TerraSAR-X satellite offers a higher resolution.