INTERNATIONAL JOURNAL OF NUMBER THEORY, cilt.14, sa.4, ss.1033-1046, 2018 (SCI-Expanded)
In 1862, Wolstenholme proved that the numerator of the (p - 1)th harmonic number is divisible by p(2) for any prime p >= 5. A variation of this theorem was shown by Alkan and Leudesdorf. Motivated by these results, we prove a congruence modulo some odd primes for some generalized harmonic type sums.