Euler sums and non-integerness of harmonic type sums


Goral H., SERTBAŞ D. C.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.49, sa.2, ss.586-598, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 49 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.15672/hujms.544489
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.586-598
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

We show that Euler sums of generalized hyperharmonic numbers can be evaluated in terms of Euler sums of generalized harmonic numbers and special values of the Riemann zeta function. Then we focus on the non-integerness of generalized hyperharmonic numbers. We prove that almost all generalized hyperharmonic numbers are not integers and our error term is sharp and the best possible. Finally, we analyze generalized hyperharmonic numbers in terms of topology and relate this to non-integerness.