Pt-Ni@PC900 Hybrid Derived from Layered-Structure Cd-MOF for Fuel Cell ORR Activity


Nadeem M., Yasin G., Arif M., Bhatti M. H., SAYIN K., Mehmood M., ...Daha Fazla

ACS OMEGA, cilt.5, sa.5, ss.2123-2132, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 5 Sayı: 5
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1021/acsomega.9b02741
  • Dergi Adı: ACS OMEGA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Directory of Open Access Journals
  • Sayfa Sayıları: ss.2123-2132
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

Fuel cell technology is the supreme alternate option for the replacement of fossil fuel in the current era. Pt alloys can perform well as fuel cell electrodes for being used as catalytic materials to perform the very notorious oxygen reduction reaction. In this regard, first, a layered metal-organic framework with empirical formula [C8H10CdO7](n)center dot 4H(2)O is synthesized and characterized using various experimental and theoretical techniques. Then, a nanostructured porous carbon material with a sheet morphology (PC900) having a high BET surface area of 877 m 2 is fabricated by an inert-atmosphere thermal treatment of the framework upon heating up to 900 degrees C. Pt and Ni nanoparticles are embedded into PC900 to prepare a homogenized hybrid functional material, i.e., Pt-Ni@PC900. The Pt-Ni@PC900 hybrid is proved to be an excellent ORR catalyst in terms of half-wave potential and limiting current density with 7% Pt loading compared with the commercially available 20% Pt/C catalyst. Pt-Ni@PC900 also shows stability of current up to 12 h with only a very small variation in current. This work highlights the importance of Pt alloys in future large-scale commercial applications of fuel cells.