Nevşehir Castle Region in Turkey Interpreted by the Use of Seismic Surface Wave and Electrical Resistance Measurements Together


Çakır Ö., Coşkun N. , Erduran M.

Pakistan Journal of Geology , cilt.3, sa.2, ss.9-19, 2019 (Diğer Kurumların Hakemli Dergileri)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 3 Konu: 2
  • Basım Tarihi: 2019
  • Doi Numarası: 10.2478/pjg-2019-0007
  • Dergi Adı: Pakistan Journal of Geology
  • Sayfa Sayıları: ss.9-19

Özet

The underground city beneath the Nevşehir Castle located in the middle of Cappadocia region in Turkey with approximately cone shape is investigated by jointly utilizing the modern geophysical techniques of seismic surface waves and electrical resistivity. The systematic void structure under the Nevşehir Castle of Cappadocia, which is known to have widespread underground cities, is studied by the use of 33 separate two-dimensional profiles ~4-km long where electrical resistivities and seismic surface waves are concurrently measured. Seismic surface wave measurements are inverted to establish the shear-wave velocity distribution while resistivity measurements are inverted to resolve the resistivity distribution. Several high-resistivity anomalies with a depth range 8-20 m point to a systematic void structure beneath the Nevşehir Castle. We were able to effectively isolate the void structure from the embedding structure since the currently employed resistivity instrument has provided us high resolution quality measurements. Associated with the high resistivity anomalies there exist low-velocity depth zones acquired from the surface wave inversions also pointing to a systematic void structure where three-dimensional visualization techniques are used to show the extension of the void structure under the studied area.
The underground city beneath the Nevşehir Castle located in the middle of Cappadocia region in Turkey with approximately cone shape is investigated by jointly utilizing the modern geophysical techniques of seismic surface waves and electrical resistivity. The systematic void structure under the Nevşehir Castle of Cappadocia, which is known to have widespread underground cities, is studied by the use of 33 separate two-dimensional profiles ~4-km long where electrical resistivities and seismic surface waves are concurrently measured. Seismic surface wave measurements are inverted to establish the shear-wave  velocity  distribution  while  resistivity  measurements  are  inverted  to  resolve  the  resistivity  distribution.  Several  high-resistivity  anomalies  with  a depth  range  8-20  m  point  to  a  systematic  void  structure beneath the Nevşehir Castle. We were able to effectively isolate the void structure from the embedding structure since the currently employed resistivity instrument has provided us high resolution quality measurements. Associated with the high resistivity anomalies there exist low-velocity depth zones acquired from the surface wave inversions also pointing to a systematic void structure where three-dimensional visualization techniques are used to show the extension of the void structure under the studied area. Keywords: Cappadocia, Inversion, Resistivity, Shear Velocity, Underground City