Determination of Dynamic Characteristics of Composite Cantilever Beams Using Experimental and Analytical Methods


TÜRKAY A.

Buildings, cilt.15, sa.10, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 10
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/buildings15101608
  • Dergi Adı: Buildings
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: ambient vibration test, analytical model calibration, dynamic characteristics, experimental modal analysis, finite element method, operational modal analysis
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

The behavior of structural elements, which is very important in structural engineering, can be determined non-destructively using ambient vibration tests. Composite elements used in structures can be formed by combining elements of different materials. It is much more difficult to predict the structural behavior of composite elements because they are made of different materials. Ambient vibration tests are one of the most important methods used to determine the dynamic characteristics of composite elements. In this study, composite cantilever beams were formed by combining wood and steel profiles in various combinations. The dynamic characteristics of these beams (natural frequency, mode shape, modal damping ratio) were determined by both the numerical method and operational modal analysis (OMA) method. Firstly, the initial analytical models of the beams were modeled using the finite element program. The natural frequencies and mode shapes of the models were determined using the modal analysis method. While creating the initial analytical model, the material properties of the beams were entered by taking into account the standard values in the literature. Then, the dynamic characteristics of the beams were determined using an experimental modal analysis method (operational modal analysis test). The dynamic characteristics obtained from tests and the analysis of the initial analytical models were compared. The analytical models were calibrated according to the test results. In this way, the modeled beams were provided with a more realistic dynamic behavior. Numerical models were modeled using the SAP2000 program. As a result of the analysis, the dynamic characteristics and structural properties of composite cantilever beams were compared. As the elasticity modules and cross-sections of the profiles used in the beams increase, the stiffness of the beams also increases. It was determined that the natural frequencies of the composite beams increase with the increase in their stiffness. When the frequencies of the first modes of the least rigid wood (W) beam and the most rigid steel–wood–steel (S-W-S) beam were compared, an increase of 47% was detected.