Structural, electronic and optical properties of 2,5-dichloro-p-xylene: experimental and theoretical calculations using DFT method

Creative Commons License

Venkatesh G., Govindaraju M., Kamal C., Vennila P., Kaya S.

RSC ADVANCES, cilt.7, ss.1401-1412, 2017 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 7 Konu: 3
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1039/c6ra25535c
  • Dergi Adı: RSC ADVANCES
  • Sayfa Sayıları: ss.1401-1412


The vibrational spectra including FT-IR and FT-Raman for 2,5-dichloro-p-xylene (DCPX) have been recorded. All the energies, the geometry of the compound and vibrational frequencies of (DCPX) have been calculated using density functional theory (DFT/B3LYP) method coupled with 6-31G* and 6-311+G** functionals. The occurrence of charge transfer was known from the HOMO-LUMO energy gap of DCPX. In order to find out the electronic excitation energies, oscillator strength and nature of the respective excited states, the closed-shell singlet calculation method has been utilized for DCPX. The values of the total dipole moment (mu) and the first order hyperpolarizability (beta) of DCPX have been investigated. The non-linear optical (NLO) behavior of DCPX has been identified from the results of hyperpolarizability values.