Length-Preserving Hair Simulation via Bézier Curves and Artificial Neural Network


Creative Commons License

Gürkahraman K., Yelkuvan A. F., Karakis R.

20th Conference on Computer Science and Intelligence Systems (FedCSIS), Krakow, Polonya, 14 - 17 Eylül 2025, cilt.43, ss.309-314, (Tam Metin Bildiri) identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 43
  • Doi Numarası: 10.15439/2025f5270
  • Basıldığı Şehir: Krakow
  • Basıldığı Ülke: Polonya
  • Sayfa Sayıları: ss.309-314
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

In this study, we present a data-driven method for preserving the length of cubic B´ezier curves under external deformations, specifically in the context of hair strand simulation. By sampling millions of original and displaced control point con- figurations within a 2D bounded grid space, we construct a large dataset of B\'ezier curve pairs and compute the corresponding t\_final parameters required to preserve arc length. A lightweight artificial neural network (ANN) architecture is trained on this dataset to predict t\_final given 16 features representing the coor- dinates of initial and displaced control points. The model achieves a low mean absolute error (MAE) of 0.00091992 on the test set, ensuring high predictive accuracy. Performance evaluations show that the ANN can predict t\_final values for up to 200k hair strands in approximately 8 seconds on a standard laptop, aligning with the average number of strands on a human scalp. This approach replaces computationally expensive numerical length-matching operations with a fast, inference-based framework, allowing for efficient simulation of realistic, deformable hair motion while maintaining individual strand lengths.