ICMSMM 2014), XI International Conference on Materials Science, Metal and Manufacturing, Barcelona, İspanya, 18 - 19 Ağustos 2014, cilt.8, ss.704-708
Metal matrix composites (MMCs) have gained a
considerable interest in the last three decades. Conventional powder
metallurgy production route often involves the addition of reinforcing
phases into the metal matrix directly, which leads to poor wetting
behavior between ceramic phase and metal matrix and the
segregation of reinforcements. The commonly used elements for
ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V
and C, B. The aim of the present paper is to investigate the effect of
sintering temperature and V-B addition on densification, phase
development, microstructure, and hardness of Fe–V-B composites
(Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder
metallurgy process. Metal powder mixes were pressed uniaxial and
sintered at different temperatures (ranging from 1300 to 1400ºC) for
1h. The microstructure of the (V, B) Fe composites was studied with
the help of high magnification optical microscope and XRD.
Experimental results show that (V, B) Fe composites can be produced
by conventional powder metallurgy route.
Keywords—Hardness, Metal matrix composite (MMC), Microstructure, Powder Metallurgy.