Applied Sciences (Switzerland), cilt.15, sa.5, 2025 (SCI-Expanded)
Coenzyme Q10 (CoQ10) is a molecule that serves as a coenzyme for mitochondrial enzymes, playing a fundamental role in mitochondrial bioenergetics as an electron and proton carrier in the energy production process. This study aimed to examine the modulatory effects of moderate/high-intensity exercise and CoQ10 supplementation on tumstatin, lipid dynamics, and body mass in rats. This study used 42 male Wistar Albino rats in six groups: a control group (C), a moderate-intensity continuous training group (MICT), a high-intensity continuous training group (HICT), a coenzyme Q10 group (Q10), a moderate-intensity continuous training combined with Q10 group (MICTQ10), and a high-intensity continuous training combined with Q10 group (HICTQ10) to assess the effects of exercise and 5 mg/kg/daily CoQ10 supplementation. Rats underwent treadmill training, and tumstatin levels in plasma, cardiac, and skeletal muscle tissues were measured using ELISA and immunostaining techniques. In addition to the plasma, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and total cholesterol (TC) levels were analyzed using enzymatic methods, with the LDL-C calculated using the Friedewald equation. The atherogenic index of plasma was determined by the TG/HDL-C ratio. As compared to group C, body mass was significantly affected by both exercise intensity and supplementation (p = 0.01, η2 = 0.37), with the MICTQ10 and HICTQ10 groups demonstrating the greatest reductions by day 50th (p = 0.0003, d = 4.02; p = 0.0001, d = 3.99). Lipid profiles varied significantly between groups. Compared to the C group, the MICTQ10 group exhibited the most substantial decreases in LDL-C (p = 0.03, d = 2.35) and TG levels (p = 0.03, d = 2.25), while the HICTQ10 group showed the most pronounced reduction in TC levels (p = 0.001, d = 6.41). Regarding tumstatin levels, skeletal muscle tumstatin levels were lowest in the HICTQ10 group (p = 0.01, d = 2.11). Moreover, cardiac muscle tumstatin levels were significantly lower in the MICTQ10, MICT, and HICTQ10 groups compared to in the C group (p = 0.004, d = 1.01). These findings suggest that both exercise intensity and CoQ10 supplementation exert notable physiological effects, particularly in modulating body mass, lipid metabolism, and tumstatin levels.