Green Synthesis of Pyrrole Derivatives Catalyzed by Molecular Sieves: DFT, ADMT, and Molecular Docking Investigations


SERDAROĞLU G., Uludağ N., Üstün E.

ChemistrySelect, cilt.9, sa.9, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 9 Sayı: 9
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/slct.202400019
  • Dergi Adı: ChemistrySelect
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier
  • Anahtar Kelimeler: ADMT, DFT, molecular docking, molecular sieves, Substituted pyrroles
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

A new synthetic methodology for the preparation by a different alternative method of five aryl pyrrole derivatives is produced from the corresponding ketoximes, giving diverse five-membered N-heterocycles in satisfactory yields. For the first time in literature, the synthetic catalyst molecular sieves were described. The simplicity and high response yield of this procedure are its standout qualities. Additionally, spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, elemental analysis) were used to confirm the structures of all synthesized compounds. FT-IR and NMR computations with B3LYP/6-311G** level by utilizing the G09 W package were performed to compare with observed data and evaluate the structural confirmation of novel pyrrole derivatives. Then, the lipophilic characterization and water solubility were computed to enlighten the physicochemical attitude. The ADMT properties were calculated to elucidate the possible bioavailability tendencies of the compounds and the adverse behaviour in terms of both medicinal and environmental. FMO analyses were also conducted to indicate/show the reactivity tendencies and possible regions. The molecular docking analyses of the optimized molecules were performed against Bovine Serum Albumin and Leukemia Inhibitory Factor. In conclusion, this study underscores the crucial role of green chemistry principles in developing novel synthetic methodologies, using environmentally benign catalysts like zeolite 3 Å.