International Journal of Academic Medicine and Pharmacy, sa.1, ss.29-34, 2021 (Hakemli Dergi)
Of all the long bones in the human skeleton, the bone fractured most often is the tibia. In
the surgical treatment of shaft fractures, the use of the correct length nail is important. Therefore,
the length of the tibia is crucial during orthopedic surgery and in forensic science, anatomy and
anthropology. In this study, the Artificial Neural Network (ANN) method was applied to obtain a
correct estimation of the tibia length from its proximal measurements. The inputs of the ANN, which
are independent parameters of the problem, are the age of the subject, the tibia side, top
measurement, middle measurement, bottom measurement and fibula length. A total of 193 tibia
bone measurements were taken from an adult Turkish population. Five different input parameter
combinations were tried for the correct determination of the tibia length. According to these
combinations, the root mean square error (RMSE) values and correlation coefficients ® were
obtained as 21.27, 17.60, 19.56, 18.39, 6.14 and 0.66, 0.78, 0.72. 0.76, 0.98 for the training data
of ANN, respectively. For the test data these values were 21.81, 21.53, 23.32, 21.50, 9.26 for RMSE
and 0.51, 0.56, 0.44, 0.55, 0.93 for values. The correlation coefficients showed a moderate
correlation between data in the ANN estimation, and according to the RMSE values, the error in the
estimations was at the level of approximately 5%.