International journal of biological macromolecules, cilt.209, sa.A, ss.1234-1247, 2022 (SCI-Expanded)
Chitosan (Ch), vermiculite (V) and lignin (L) were used as the components of a natural composite adsorbent (Ch-VL) for the removal of the UO22+ ions in aqueous solutions. During the study, we recorded and analyzed the initial UO22+ ion concentration, initial pH, contact time, temperature, and recovery. The recycling performance of the Ch-VL composite was assessed by three sequential adsorption/desorption experiments. Adsorption performance of the Ch-VL composite for UO22+ ions was 600 mg L-1 at pH 4.5 and temperature of 25 ?. Thermodynamic findings, delta H-0:28.1 kJ mol(-1), and delta G(0):- 14.1 kJ mol(-1) showed that adsorption behavior was endothermic and spontaneous. Its maximum adsorption capacity was 0.322 mol kg(-1), obtained from the Langmuir isotherm model. The adsorption kinetics indicated that it followed the pseudo-second-order and intraparticle diffusion rate kinetics. The adsorption thermodynamic shown indicated that the UO22+ ion adsorption was both spontaneous and endothermic. The adsorption process was enlightened by FT-IR and SEM-EDX analyses. The study suggested a simple and cost-effective approach for the removal of toxic UO22+ ions from wastewater. To highlight the adsorption mechanism, DFT calculations were performed. Theoretical results are in good agreement with experimental observations.