Sequential use of the electrocoagulation-electrooxidation processes for domestic wastewater treatment


Özyonar F., Korkmaz M. U.

CHEMOSPHERE, cilt.290, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 290
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.chemosphere.2021.133172
  • Dergi Adı: CHEMOSPHERE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Domestic wastewater treatment, Removal of COD, Removal of NH4-N, Electrodisinfection, Electrochemical treatment, ADVANCED OXIDATION PROCESSES, ELECTROCHEMICAL OXIDATION, MEMBRANE BIOREACTOR, ORGANIC POLLUTANTS, REMOVAL, TECHNOLOGIES, ELECTRODES, SULFAMETHOXAZOLE, MINERALIZATION, DISINFECTION
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

Nowadays, the decrease in useable water resources day by day necessitates studies on the protection of resources by treating wastewater. It is also one of the best options for reusing the water to be treated, and electrochemical technologies can be an alternative to existing technologies, because of the easy operation and effectiveness of pollutants treatment. The study evaluated the treatment of domestic wastewater by Electrocoagulation-Electrooxidation successive processes in continuous and batch modes. The effects of the operational parameters on the Electrocoagulation and Electrooxidation processes were determined for removals of chemical oxygen demand, ammonium-nitrogen, nitrate-nitrogen, turbidity, phosphate phosphorus, nitrite-nitrogen, and Escherichia coli. The experiments revealed that the Electrocoagulation process effectively removed all pollutants but not ammonium-nitrogen. After the Electrocoagulation process was completed, ammonium-nitrogen from domestic wastewater treatment was removed with the Electrooxidation process for further treatment. The optimum operational conditions in the Electrocoagulation process were electrode type iron anode-carbon felt cathode, current density 100 A m(-2), initial pH original, and operation time 20 min. Under these conditions, removal efficiencies of chemical oxygen demand, turbidity, phosphate-phosphorus, nitrate-nitrogen, nitrite-nitrogen, and Escherichia coli were found to be 90.2%, 96%, 88.2%, 73.6%, and 97.9%, respectively. The removal efficiencies for the optimum operating conditions of the Electrooxidation process using Ti/SbO2 anode and stainless steel cathode were obtained as 95.4% (chemical oxygen demand), 89.4% (ammonium-nitrogen), and 99.99% (Escherichia coli) at 100 A m- 2, 5 mm electrode distance, and 30 min operation time. Finally, the EC process is an effective process for removing chemical oxygen demand, phosphate-phosphorus, turbidity, nitrite-nitrogen, and nitrate-nitrogen. However, the Electrooxidation process is a successful process for the treatment of ammonium-nitrogen and Escherichia coli. This research revealed that the sequential processes effectively removed organic, inorganic, and Escherichia coli from domestic wastewater.