Half-inverse problems for the quadratic pencil of theSturm-Liouvilleequations with impulse


AMİROV R., ERGÜN A., DURAK S.

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, cilt.37, sa.1, ss.915-924, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1002/num.22559
  • Dergi Adı: NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Communication Abstracts, Compendex, MathSciNet, zbMATH, DIALNET, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.915-924
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

In this paper, we consider the inverse spectral problem for the impulsive Sturm-Liouville differential pencils on [pi/2] with the Robin boundary conditions and the jump conditions at the point pi/2. We prove that two potentials functions on the whole interval and the parameters in the boundary and jump conditions can be determined from a set of eigenvalues for two cases: (i) the potentials given on ( 0,pi/2). and (ii) the potentials given on (pi/2,pi), where 0< alpha< 1, respectively. Inverse spectral problems, Sturm-Liouville operator, spectrum, uniqueness.