Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, cilt.8, sa.1, ss.279-291, 2021 (Hakemli Dergi)
Öneri sistemleri, bireysel kullanıcılara herhangi bir kişisel çaba gerektirmeden geçmişteki tercihlerine ve özelliklerine göre uygun ürünleri/hizmetleri öneren otomatikleştirilmiş araçlardır. Bu sistemlerde, işbirlikçi filtreleme algoritmaları, ürünler için bireysel tahminler veya kullanıcılar için tercih edilir ürünlerin sıralı bir listesini üretmek için en çok kullanılan yaklaşımlardır. Bu tür algoritmaların verimliliği genellikle sağlanan önerilerin doğruluğu ile değerlendirilse de, ürün kataloğu kapsamı gibi doğruluk-üstü değerlendirmeler de nitelikli önerilerde kritik faktörler olarak kabul edilir. Ancak, son zamanlarda yapılan birçok çalışma, bu algoritmaların, belirli özellikleri (örn. popülerlik) nedeniyle bazı ürünleri üretilen sıralı listelerde diğerlerinden daha çok öne çıkarma eğiliminde olduğunu göstermiştir. Bu çalışmada, ürün profillerini farklı bir bakış açısıyla, beğenilme dereceleriyle irdeliyor ve işbirlikçi filtreleme algoritmalarının çok beğenilen ürünlere yönelik bir yanlılığının olup olmadığını araştırıyoruz. Bu amaçla, üç farklı kategoriden dokuz önemli işbirlikçi filtreleme algoritmasını kullanıyoruz ve iki gerçek-dünya veri kümesi üzerinde çeşitli deneyler gerçekleştiriyoruz. Deneysel sonuçlar, hemen hemen tüm algoritmaların çok beğenilen ürünlere yönelik güçlü bir yanlılığının olduğunu ve SVD ile SVD++ gibi matris çarpanlarına ayırma tabanlı algoritmaların yüksek kalitede öneriler üretmede diğerlerinden daha başarılı olduğunu göstermiştir.