ON IMPULSIVE STURM-LIOUVILLE OPERATORS WITH COULOMB POTENTIAL AND SPECTRAL PARAMETER LINEARLY CONTAINED IN BOUNDARY CONDITIONS


Creative Commons License

Amirov R. , Topsakal N. , Guldu Y.

UKRAINIAN MATHEMATICAL JOURNAL, cilt.62, ss.1345-1366, 2011 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 62 Konu: 9
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1007/s11253-011-0436-9
  • Dergi Adı: UKRAINIAN MATHEMATICAL JOURNAL
  • Sayfa Sayıları: ss.1345-1366

Özet

The Sturm-Liouville problem with linear discontinuities is investigated in the case where an eigenparameter appears not only in a differential equation but also in boundary conditions. Properties and the asymptotic behavior of spectral characteristics are studied for the Sturm-Liouville operators with Coulomb potential that have discontinuity conditions inside a finite interval. Moreover, the Weyl function for this problem is defined and uniqueness theorems are proved for a solution of the inverse problem with respect to this function.