Investigation of the mechanisms involved in anticancer effect of glucosamine sulfate on SH-SY5Y cell line.


Creative Commons License

Sahin B., Gunes H., Ozturk A.

Bratislavske lekarske listy, cilt.123, sa.5, ss.366-371, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 123 Sayı: 5
  • Basım Tarihi: 2022
  • Doi Numarası: 10.4149/bll_2022_058
  • Dergi Adı: Bratislavske lekarske listy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, EMBASE
  • Sayfa Sayıları: ss.366-371
  • Anahtar Kelimeler: glucosamine sulfate, cell viability, SH-SY5Y cell, oxidative stress, dna damage, apoptosis, ELISA, MOLECULAR-MECHANISMS, DOWN-REGULATION, CANCER CELLS, APOPTOSIS, CYCLE, DERIVATIVES, PROGRESSION
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

AIM: Glucosamine derivatives have been found to have anticancer effects in many cancer cell lines in previous investigations. The effect of glucosamine sulfate on neuroblastoma, however, is uncertain. The potential cytotoxic effects of glucosamine sulfate on the SH-SY5Y cell line were investigated in this study. The underlying mechanisms of this cytotoxicity have also been studied. MATERIAL AND METHODS: In this study, the SH-SY5Y cell lines were used. The cells were treated with various concentrations of glucosamine sulfate (0.3125, 0.625, 1.25 and 2.5 μg/mL) and the viability of the cells was determined using the XTT assay after 24 hours. The quantities of cleaved PARP, BCL-2, 8-Hydroxy-desoxyguanosine (8-oxo-dG), cleaved caspase 3, Bax, total oxidant, and total antioxidant in the cells were determined by ELISA kits. RESULTS: At doses of 0.3125, 0.625, 1.25 and 2.5 μg/mL, glucosamine sulfate dramatically reduced cell viability in SH-SY5Y cells (p<0.001). ELISA tests demonstrated that 1.25 μg/mL glucosamine sulfate considerably increased the amounts of 8-oxo-dG, cleaved caspase 3, Bax, cleaved PARP and total oxidant. However, 1.25 μg/mL glucosamine sulfate treatment did not change the quantity of BCL-2 protein. CONCLUSIONS: Altogether, glucosamine sulfate produced considerable cytotoxicity in SH-SY5Y cells by triggering oxidative stress, inducing DNA damage, and finally causing apoptosis. In addition, more research is needed to determine the efficacy of glucosamine sulfate as an anticancer drug in the treatment of neuroblastoma (Fig. 5, Ref. 39).