Vanadium(IV) complexes of salicylaldehyde-based furoic acid hydrazones: Synthesis, BSA binding and in vivo antidiabetic potential


Zahirović A., Hadžalić S., Višnjevac A., Fočak M., TÜZÜN B., Žilić D., ...Daha Fazla

Journal of Inorganic Biochemistry, cilt.244, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 244
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.jinorgbio.2023.112232
  • Dergi Adı: Journal of Inorganic Biochemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, EMBASE, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: 2-furoic acid, Antidiabetic in vivo potential, BSA binding affinity, Salicylaldehyde, Swiss-ADME analysis, Vanadium(IV) hydrazone complexes
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

Solution synthesis afforded five novel neutral heteroleptic octahedral paramagnetic mononuclear oxidovanadium(IV) complexes of general composition [VO(bpy)L], where L is a dianionic tridentate ONO-donor hydrazone ligand derived from 2-furoic acid hydrazide and salicylaldehyde and its 5-substituted derivatives. Characterization was carried out by elemental analysis, mass spectrometry, infrared, electron, NMR, and EPR spectroscopy, cyclic voltammetry and conductometry. The molecular and crystal structure of the complex with 5-chloro-salicylaldehyde 2-furoic acid hydrazone (2) was determined. The quantum chemical properties of the vanadium complexes were studied at B3LYP and M062X levels with the lanl2dz basis set using Gaussian. Additionally, Swiss-ADME analysis was performed and complex (4), featuring a 5-nitro substituent on the hydrazone ligand, was selected for further investigation. The effects of the in vivo application of the complex on selected biochemical parameters in healthy and diabetic Wistar rats were investigated. Strong antidiabetic effect associated with moderate hypoalbuminemia was observed. Furthermore, the interaction of complexes with BSA was studied by spectrofluorimetry. A significant conformational change of BSA in the presence of vanadium complexes was found. Synchronous fluorescence spectra revealed significant changes in the tyrosine microenvironment of BSA. The FRET analysis was also used and the non-radiative process of energy transfer is elucidated. Thermodynamic data suggest van der Waals forces and hydrogen bonding as predominant binding modes of complexes to BSA.