Some identities involving multiplicative semiderivations on ideals


Creative Commons License

Gölbaşı Ö., Bedir Z.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.50, sa.4, ss.963-969, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Sayı: 4
  • Basım Tarihi: 2021
  • Doi Numarası: 10.15672/hujms.650600
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.963-969
  • Anahtar Kelimeler: prime rings, semiderivation, multiplicative semiderivation, DERIVATIONS, PRIME, MAPPINGS
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

Let R be a prime ring and I be a nonzero ideal of R. A mapping d : R -> R is called a multiplicative semiderivation if there exists a function g : R -> R such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and (ii) d(g(x)) = g(d(x)) hold for all x, y is an element of R. In the present paper, we shall prove that [x, d(x)] = 0, for all x is an element of I if any of the followings holds: i) d(xy) +/- xy is an element of Z, H) d(xy) +/- yx is an element of Z, Hi) d(x)d(y) +/- xy is an element of Z, iv) d(xy) +/- d(x)d(y) is an element of Z, viii) d(xy) +/- d(y)d(x) is an element of Z, for all x, y is an element of I. Also, we show that R must be commutative if d(I) subset of Z.