Assessing the Antiangiogenic Effects of Chalcones and Their Derivatives


BURMAOĞLU S., Gobek A., ANIL D., ALAGÖZ M. A., Guner A., Güler C., ...Daha Fazla

Polycyclic Aromatic Compounds, cilt.44, sa.1, ss.51-66, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 44 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/10406638.2023.2167216
  • Dergi Adı: Polycyclic Aromatic Compounds
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, Food Science & Technology Abstracts, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.51-66
  • Anahtar Kelimeler: Chalcone, anti-angiogenic activity, anti-proliferative activity, RT-qPCR, molecular docking
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

Pathological angiogenesis plays a critical role in tumorigenesis and tumor progression, and anti-angiogenesis therapies have evinced promising antitumor effects in solid tumors. Chalcone skeleton has been regarded as a potential antitumor agent that also targets angiogenesis. In this study, we designed twenty-one non-fluoro-substituted chalcones (13–18, 24–27) and saturated chalcone derivatives (19–23, 28–33) as anti-angiogenic compounds. During the initial stage, these compounds were assessed for their anti-cancer activities against MCF-7 cancer cell lines according to the MTT assay. The compounds revealed satisfactory anti-proliferative capability. An ex vivo fertilized hens’ egg-chorioallantoic membrane (HET-CAM) angiogenic study was conducted for the compounds to gauge their mortality and toxicity, which, in turn, revealed a potent anti-angiogenic effect. Eight compounds (16, 17, 21, 24, 26, 27, 29, and 31) significantly reduced densities of capillaries on CAM, whereas compounds 27 and 29 were the most effective anti-angiogenic agents, when compared with Suramin. Moreover, RT-qPCR analysis demonstrated that the anti-angiogenic activity was associated with the fold changes of VEGFR2. Molecular docking studies were conducted for compounds to investigate their mode of interaction within the binding site of VEGFR-2 kinases. This work provided a basis for further design, structural modification, and development of chalcone derivatives as new anti-angiogenic agents.