Applied Computational Electromagnetics Society Journal, cilt.36, sa.2, ss.159-167, 2021 (SCI-Expanded)
© 2021 Applied Computational Electromagnetics Society (ACES). All rights reserved.Numerical study of electromagnetic interaction between an adjacent antenna and a human head model requires long computation time and large computer memory. In this paper, two speeding up techniques for a dispersive algorithm based on finite-difference time-domain method are used to reduce the required computation time and computer memory. In order to evaluate the validity of these two speeding up techniques, specific absorption rate (SAR) and temperature rise distributions in a dispersive human head model due to radiation from an antenna integrated into a pair of smart glasses are investigated. The antenna integrated into the pair of smart glasses have wireless connectivity at 2.4 GHz and 5th generation (5G) cellular connectivity at 4.9 GHz. Two different positions for the antenna integrated into the frame are considered in this investigation. These techniques provide remarkable reduction in computation time and computer memory.