Some results on ideals of semiprime rings with multiplicative generalized derivations


Koç E., Gölbaşı Ö.

COMMUNICATIONS IN ALGEBRA, cilt.46, ss.4905-4913, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1080/00927872.2018.1459644
  • Dergi Adı: COMMUNICATIONS IN ALGEBRA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.4905-4913
  • Sivas Cumhuriyet Üniversitesi Adresli: Evet

Özet

Let R be a semiprime ring and I a nonzero ideal of R. A map F:RR is called a multiplicative generalized derivation if there exists a map d:RR such that F(xy)=F(x)y+xd(y), for all x,yR. In the present paper, we shall prove that R contains a nonzero central ideal if any one of the following holds: i) iii) F is SCP on I, iv) F(u)degrees F(v)=u degrees v, for all u,v is an element of I.