The effect of Ag loading on supercapacitor performance of graphene based nanocomposites


Ciplak Z., Yildiz N.

FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, cilt.27, sa.1, ss.65-76, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 27 Sayı: 1
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1080/1536383x.2018.1504022
  • Dergi Adı: FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.65-76
  • Anahtar Kelimeler: Graphene, Ag nanoparticles, nanocomposites, supercapacitor, SILVER NANOPARTICLES, GREEN SYNTHESIS, OXIDE, POLYPYRROLE, ELECTRODE, COMPOSITES, SPHERES, ROUTE
  • Sivas Cumhuriyet Üniversitesi Adresli: Hayır

Özet

In the present study, we prepared reduced graphene oxide (rGO) decorated with Ag nanoparticles by a one pot, simultaneous reduction method. The effect of AgNO3 amount on the chemical, morphological and electrochemical properties of binary rGO-Ag nanocomposite for supercapacitor application was investigated. The chemical and morphological characterization of prepared rGO-Ag nanocomposites was realized with field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). For supercapacitor application, electrochemical performance of the nanocomposites was investigated with cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. As a result of their excellent conductivity and spacer role which prevent aggregation of rGO nanosheets and maintain the electroactive surface area, Ag nanoparticles significantly enhance the electrochemical performance of the nanocomposite. The rGO-Ag nanoparticle nanocomposite exhibited a maximum specific capacitance of 34.2 mF cm(-2) at 0.6 A cm(-2) current density. The nanocomposite electrode also has excellent rate capability and cycle life. The capacitance retention of rGO-Ag electrode is 98% after 1000 charge-discharge cycle. The results showed that rGO-Ag nanocomposite is a building block for ternary or other multicomponent nanocomposites.