Food Chemistry, cilt.460, 2024 (SCI-Expanded)
Given the high antioxidant capacity of gallic acid (GA), there is a great deal of interest in the development of rapid, selective, simple, and easily accessible analytical methods for its determination from complex samples. Consequently, the present study aimed to develop an ultrasonic assisted magnetic ionic liquid-based dispersive liquid microextraction (UA-MIL-DLLME) method for the extraction of GA from various samples prior to its spectrophotometric detection. The method's key variables were optimized through statistical analysis. Four magnetic liquids (MILs) were prepared and tested to extract the GA-Se complex formed in aqueous solution. Both experimental studies and theoretical calculations demonstrated that the most suitable MIL for the phase separation of the relevant complex is [P6,6,6,14][Mn(hfacac)3]. The developed UA-MIL-DLLME method exhibited a wide linear range (5–400 ng mL-1), a remarkable enhancement factor (133), and a low limit of detection (1.6 ng mL-1). Additionally, high extraction recovery (97 ± 1%) with a low relative standard deviation (1.9%) was achieved. The extraction time for the UA-MIL-DLLME method was 8 min. The precision of the method was evaluated through repeatability and reproducibility studies. Finally, the UA-MIL-DLLME method was successfully applied to the extraction of the GA from complex samples using a reference method.